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1. Summary

This report summarizes efforts to enhance our knowledge of the dynamic proccsses
associated with injectors in liquid rocket engines. Progress has been made on a number of
fronts. Linear stability analyses have been performed to assess the wavelengths of
instabilities in ox-rich staged combustion (ORSC) injector elements. Most unstable
wavelengths have been characterized over a wide parameter space to provide researchers with
an understanding of drop sizes shed from fuel films in these injector elements.

The dynamics of classical swirl injectors have been investigated for both single and dual
tangential inlet channel designs. The use of multiple inlet channels is believed to lead to
wave cancellations in the chamber, thereby reducing injector response to perturbations
imposed from the combustion chamber. Existing theoretical/linear models have been
modified to handle the multi-channel design and show substantial reduction in injector
response over a range of frequencies. Companion nonlinear calculations are also in work for
both single and dual channel designs. For both cases, it appears that nonlinear effccts reducc
overall amplitude of the response as compared to the linear theory.

Work has continued on a comprehensive primary atomization model that relies on no
empirical inputs. With recent parallelization of our boundary element codes, we are now able
to simulate more and more complex and dense sprays and are able to compute drop statistics
(Sauter Mean Diameter) from first principles in a unique nonlinear simulation,

Related work has been conducted in drop splashing as a result of capabilities built up to
assess primary atomization physics. Numerous archival publications have resulted from the
efforts:

Archival publications (published) during reporting period:

1. Yoon, S. S., and Heister, S. D., “A Nonlinear Atomization Model Based on a
Boundary Layer Instability Mechanism,” Physics of Fluids, V16, No.l, pp. 47-61,
2004.

2. Yoon, S. S., and Heister, S. D., “A Fully Nonlinear Model for Atomization of High-
Speed Jets,” Engineering Analysis with Boundary Elements, V28, pp 345-357, 2004.

3. Yoon, S. S., and Heister, S. D., “Categorizing Linear Theories for Atomizing Jets,”
Atomization and Sprays, V13, pp.499-516, 2003.

4. Kim, B-D, and Heister, S. D., “Two-Phase Modeling of Hydrodynamic Instabilities in
Coaxial Injectors,” J. Propulsion and Power, V20, pp 468-479, 2004.

5. Yoon, S. S, and Heister, S. D., “Analytic Solutions for Computing Velocities Induced
from Potential Vortex Ring,” International J. for Numerical Methods in Fluids,
44:665-672, 2004.

6. Xu, C., Heister, S. D., and Blaisdell, G. A., “Simulation of Cavitated Flow in Orifices
Fed by a Manifold,” Aromization and Sprays, V14, pp 37-52, 2004.

7. Austin, B., Heister, S. D., and Anderson, W. A., “Development of Pintlc and
Splashplate Injectors for Nontoxic, Storable, Hypergolic Bipropellants,” J. Propulsion
and Power, V21, No.4, pp. 627-635, 2005.
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8. Kim, B-D, and Heister, S. D., “Three Dimensional Flow Simulations in Recessed
Region of a Coaxial Injector,” J. Propulsion and Power, V21, No.4, pp. 728-742,
20085.

9. Park, H., Yoon, S.S., and Heister, S.D., “A Nonlinear Atomization Modcl for
Computation of Drop Size Distributions and Spray Simulations”, Intl. J. for
Numerical Methods in Fluids, 48:1219-1240, 2005.

10. Park, H. and Heister, S.D., A Numerical Study of Primary Instability on Viscous
High-Specd Jets, Computers and Fluids, V35, pp. 1033-1045, 2006.

11. Corpening, J. H., Heister, S. D, and Anderson, W.A., On the Thermal Decomposition
of Hydrogen Peroxide, Part II: Modeling Results”, J. Propulsion & Power, Vol. 22,
No. 5, pp. 996-1005, 2006.

12. Park, H., and Heister, S. D., “Nonlinear Simulation of Free Surfaces and Atomization
in Pressure Swirl Atomizers”, Physics of Fluids, Vol. 18, 052103, 11 pages, May,
2006.

13. Park, H., Yoon, S. S., and Heister, S. D., “On the Nonlinear Stability of a Swirling
Liquid Jet”, Intl. J. of Multiphase Flow, to appear, 2000.

14. Macdonald, M., Canino, J. V., and Heister, S. D., “On the Nonlinear Response of
Plain Orifice Injectors”, to appear, AIAA J. Propulsion & Power, 2007.

15. Park, H., Yoon, S. S., Jepsen, R. A., and Heister, S. D., “Droplet Bounce Simulations
and Air Pressure Effects on the Deformation of Pre-Impact Droplets Using a
Boundary Element Method”, Engineering Analysis with Boundary Elements, 2007.

Technology Transfer

The research group at Purdue is supporting a variety of developments throughout the
industry. Under NASA sponsorship, models that were initially created in the AFOSR
program are being used to assess the forced response of plain orifice “pressure atomizers”
under a wide range of conditions. The models are being incorporated into the industry-
standard Rocket Combustor Interactive Design (ROCCID) code that is used by NASA MSFC,
U.S. Air Force, and numerous propulsion contractors. The models will substantially improve
the basic treatment of these atomizers and the Purdue team is working closely with Sierra
Engineering on implementation of the new models. Results from current AFOSR-sponsored
efforts in the dynamics of swirl injectors has also been transmitted to NASA officials as well
as prior simulations of shear coaxial injectors that are of great interest for new Crew
Exploration Vehicle propulsion. Our team works closely with small companies including
Sierra Engineering and INSpace LLC to provide recommendations on injector designs. We
have also provided inputs on gas/gas injectors for potential application to lunar transfer
vehicles under sponsorship from entities affiliated with Kistler Aerospace. Currently, we are
working on nonlinear dynamics of swirl injectors and hope to be able to create a submodcl
for ROCCID that would incorporate these results and permit the code to assess a whole new
class of injectors. A comparable submodel for shear and swirl coaxial injectors is also under
development under NASA sponsorship, although this is a rather low-level effort at present.



2. Research Objectives

The understanding of the complex combustion phenomena present in liquid rocket engines
begins with the fundamental process of fuel and oxidizer jet atomization. The objective of
this research has been to develop a series of models, incorporating increasingly complex
physics, to assess the role of atomization in the combustion instability process. The models
have centered on the use of Boundary Element Methods (BEMs) as a means to provide
accurate description of these complex, nonlinear processes under arbitrary unsteady
conditions. The models have demonstrated a capability to have calculations proceed bevond
atomization events.

While the basic BEM techniques are inviscid, recent development of a zonal model using
an integral method for boundary layer modeling, permits a full viscous capability. This
model, described in Appendix A of this report, is the first primary atomization model to
provide accurate, fully nonlinear treatment of atomization processes under full-scale
Reynolds numbers consistent with actual engine conditions. While these BEM simulations
have been useful in describing parent surfaces of modest complexity, other techniques are
required to resolve dense sprays formed in many rocket injection processes. For this reason,
we have embarked on the development of a viscous, unsteady, nonlinear model capable of
addressing flows in which large numbers of droplets are present.




3. Status of Research

3.1 Nonlinear dynamics and drop sizes from swirl injectors

In prior work, we compared nonlinear steady-state computations with the linear theory for
a variety of parametric injector designs including the baseline geometry summarized in Table
1. Results were generated for various grids thereby demonstrating convergence and accuracy
of the model. These grid tests showed no discernable difference in core radius, film thickness,

Table 1. Assumed  Baseline
Atomizer Simulations

Radius to Center of Tangential Chn, a,

Radius of Nozzle, a

Radius of Vortex Chamber, R,

Radius of Tangential Channcl

Length of Tangential Channel

Length of Nozzle, L,

Length of Vortex Chamber, L,

No. of Inlet Channels

Inlet Velocity

Geometry

for

=3.226 mm
=2.151 mm
=4.234 mm
=0.643 mm
=1.516 mm
= 1.500 mm
=4.547 mm
=4

=17.50 m/s

Swirl

velocities, and jet half angle, for the
meshes studied from ds=0.020to 0.040 .
Computed film thicknesses also show
excellent agreement with experimental
results and limited comparisons of
computed drop sizes with measured
data show good agreement. A typical
number of nodes that evolve for
subsequent calculations is 250 nodes
with the grid space of ds=0.032 but the
number of points increases with time up

to 900 nodes due to increased jet length. In addition, the simulation time for a dynamic
response computation takes typically about 2 weeks on the 1.0 GHz Athlon CPU used in the

modeling.

The steady-state results show
surprisingly little nonlinear effects
and the core radius, nozzle exit film
thickness, and jet half angle were
nearly identical for both the
nonlinear calculation and the linear
theory for a wide range of designs.
The one exception to this result is
for nozzles that are short; in this
case the linear theory tends to over
predict the spray half angle and
under predict the film thickness
relative to the model calculations.
Table 2. shows the extent of
agreement between the two BEM
calculations  (using  perturbing
inflow velocity and the other using
pulsating chamber pressure
incorporating Ref. 18 for solution at
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Figure 1. A 2-D axisymmetrie grid system used to model a swirl

injeetor.

interior nodes) and the linear theory for the baseline conditions summarized previously. The
minor differences between them are attributed to the limitations of the methods employed in
calculating these parameters and to the accurate calculation of fluid properties at interior
nodes rather than the difference in the specified boundary condition. This is further
confirmed, as will be discussed in a later section, by the fact that the change in core radius in
the vortex chamber due to fluctuating chamber pressure is negligible compared to the

thickness of the liquid film.




Table 2. Calculated result comparison against the theoretical result of V.G. Bazarov'’

Theoretical result BEM (perturbing BEM (perturbing chamber
inflow) pression
Core radius (r,) 0.707 0.705 0.706 ]
Film thickness (/1) 0.200 0.205 0.204 N
Half spray anglc 45° 45.5° 45.5° -
Total Nozzle entrance - 20.7 (at wall) 20.5 (at wall)
Velocity 11.7 (at free surface) 11.6 (at frec surfacc)
(m/s) Nozzle exit - 24.3 (at wall) 24.3 (at wall)
21.0 (at free surface) 21.03 (at free surface)
Outside injector 36.09 36.12(z=5.04, 36.10(z=5.04,
r=2.78) r=278) ]
Axial Inlct channel 17.50 17.50 17.56 N
Veloceity | At nozzle center 17.37 17.45 17.51
(m/s) Outside injector 26.26 26.26 26.3 B

A. Static Characteristics Analysis

The geometry provided in Table 1. served as a baseline condition for the computations. In
a steady chamber pressure condition, the radial/axial velocity profiles on both upper and
lower fluid surfaces are compared against theoretical values in Fig. 2. Results tend to
asymptotically approach the quasi-1-D theoretical values as one moves far away from
comers. Figure 3 also shows the free surface shape inside the injector as well as the final jet
shape (at +=12) with shed droplets. The liquid core evolves naturally as a part of the
calculation as does the cone angle formed by the conical sheet exiting the orifice. Under
steady flow conditions, the shed droplets are moving in the same direction as the parent jet
and their size distribution is almost constant. The computed flow properties for the steady
injection case result in an SMD/a of 0.185, and a cone half angle of 46° with other statistical
properties summarized in Table 3.

Figure 4 provides a 3-D visualization of the spray evolution and the jet core structure. The
breakup length is nearly constant after +* =5.0 and shed droplets are tracked downstream with
the direction angle of the parent jet. The overall spray is qualitatively similar with that of
actual experimental images.'® The initial ligament pinching events lead to droplets that are
dispersed somewhat from the final cone angle formed by the spray. This is an artifact of the
initial conditions selected for the simulation and not necessarily representative of the chaotic
startup observed during the chamber filling process of a real device.

Table 3. Statistical properties for a swirl injector

Properties
SMD/a 0.185
Np 1741
Dp/a 0.198
itp [U 1.21
/U 1.26
O (°) 45.8

)
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Figure 2. Radial (left) and axial (right) velocity profile along fluid surface in a classical swirl injector.
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Figure 4. Dimensional view of the final jet shape computed for baseline
conditions noted in Table |

B. Behavior under Dynamic Injection

The dynamic rcsponse was studied for the injector geometry described in Table 1. at the
baseline injection velocity and pressure drop of 17.5 m/s and 0.69 MPa respectively. To
compare results against the theoretical analysis of Bazarov & Yang,” the velocity was
interrogated at a variety of locations in the film. Figure 5 shows locations for dynamic
response analysis in our calculation. The detailed locations are as follows:

B 15 s z=0.258, r=2.665
Bt 25 s z=1.495, r=1.968
Rt 858 oz.enir: z=2.113, r=1.000
Pt 4:Upnozexit: z=12.798, r=1.000
Pt SEC 50 z=15.030, r=2.789
5
4
34 YaIPth) U (Pt5)
a ~p
- (VN (P12
U, ..(Pt4)
VN '..

0 T T T T T E T

0 1 2 3 4 5 6

z/a

( at the channel inlet )

( at the chamber wall )

( at the wall of nozzle entrance )
( at the wall of nozzle exit)

( outside the nozzle )

Two distinct approaches have
been used for simulation of unsteady
flow conditions. Initially, we utilized
a forced excitation via oscillation of
the inlet massflow. Since the
dynamics of the film thickness in the
vortex chamber could lead to large
amplitude surface waves, this
process can in principle give results
substantially different from the case
where the gas pressure in the vortex
chamber was oscillating in time. For
this reason, a second approach was
also investigated wherein the
oscillation was imposed via an
unsteady pressure in the vortex

Figure 5. Selected locations for dynamic response analysis chamber. This latter approach is

in a classical swirl injector.

more realistic for dynamics induced
by combustion chamber pressure

variations, while the former approach is more representative for feed system based

oscillations.




1. Dynamic Massflow Simulations
The dimensionless time in the computational domain is " =U/a-r, so the dimensionless

oscillation wave number ( z") for actual oscillation frequency (f) is as follows:

w':iw=12ﬂf=2'151E_3
U U 17.5

x2xx f=7.7229E -4x f 3.1
Then, for a given input oscillation frequency, the injection velocity is pulsation can be
written:

F(@')=4sin(a’r") 3.2)

where A 1s the amplitude of the massflow pulsation. In our study, the disturbance is
prescribed as a fluctuation of the inflow velocity in the tangential channel, Eq. (3.2), or as
perturbation of chamber pressure as seen in Eq. (3.3).

AP = ARy, + €sin(wt) (3.3)

In addition, the inlet for the tangential channel is assumed as the circular cylinder in our
axysimmetric simulation and its area is determined to have the same mass flow rate with the
actual injector. In order to keep the constant area for the same mass flow rate throughout the
tangential channel, the channel width at the tip and the root can be calculated:

2
RV WT.rool 1] \‘Vhere ”/T,roul = 4RT
Ro+Ly 2R,

Wrawp = (3.4)

2. Dynamic Chamber Pressure Simulations
Here, the unsteady pressure drop across the film in the vortex chamber must be ascertained
in order to determine the instantaneous pressure drop across the tangential channels. From the
i_a1a

radial momentum equation, =242, where for the potential vortex: ¥, =- . After

integration, the dimensional pressure drop across the liquid film can be computed:

=12
AI{':—& L,__IT, (3.5)
R} RE

So that the nondimensional pressure drop can be written:

F&(E 1] 1
AR = — | ——— (3.6)
87’ R2 RZ
Substituting nondimensional circulation I =27 R,V, = 27R,V,, we obtain:
2172 v2( p2
AI)Iz_Rm in L_L - in Rl:l —'l (37)
2 \R2 RZ) 2\ R

Assuming a constant stagnation pressure in the manifold and neglecting viscosity losses,
Bernoulli’s equation gives the pressure drop across the inlet channel: A, =% .

So the total pressure drop across the injector is the sum of pressure drops across the liquid
film and inlet channel:




2 2
l/in Rin

Bt SUh s e L
Knowing this pressure drop the inflow velocity can be computed as:

: Re

Ve =J2AP (3.9)

Rm

Where the overall pressure drop in the system is assumed to be a sinusoidal function of
time AP = AR, +€sin(wt) . The steady state pressure drop is calculated from the initial

conditions:

qr%wan Rl%l
2RZ

Chicady

APSlcady =)

(3.10)

Figure 2 shows a typical computational grid employed in the studies. The initial pressure
drop is computed from Eq. (3.1) based on the steady state solution for the core radius using
constant inflow rate. This pressure drop plus perturbation is further converted to massflow on
the inlet boundary using Eq. (3.2).

C. Simulations Assuming Forced Mass Flow Pulsations

A series of simulations were conducted using the unsteady massflow methodology
outlined in Egs. (3.1)«3.4). An initial simulation was performed with a 10% massflow
fluctuation ( 4 =0.1) at a frequency of 5000 Hz. At lower frequencies, the dynamic simulation
can require long integration times in order to build up statistical properties for drop sizing. In
order to save computational cost, this simulation was restarted from the steady state solution
obtained at the time of " =5.0 and integrated in time until quasi-periodic behavior was
obtained. The input and nozzle exit velocity histories are overlaid for the period 10<+ <20 n
Fig. 6. The phase lag and amplitude modulation of the input signal is evident from this
comparison.

The dynamic response for a single cycle of the imposed oscillation is depicted at various
points in the injector in Fig. 7. The unsteady part of the signal is plotted at each location in
order to assess wave amplitude and phase shifts at various points in the flow path. In Fig. 7,
the oscillation frequency and the amplitude, for the plot on the left, were set as f = 5000 Hz

and 4=0.1, respectively. The vortex chamber acts as an accumulator and changes in
massflow cause very little varations in velocity at Pt. 2; the massflow variations lead to
changes in the size of the vortex core in this region. At Pt. 3 (nozzle inlet), a very large lag is
notable and the amplitude of the oscillation increases as the fluid accelerates into the
contraction region. At the nozzle exit, the oscillation amplitude is diminished somewhat as
the swirl velocity is increased. The signal actually appears to be leading the input at this
location for the conditions studied—this unusual characteristic is unique to swirl injectors
with large vortex chambers that can cause large lags in response. The amplitude of the signal
is attenuated further at the nozzle exit and into the conical film with smaller phase lags noted
in these regions due to the relatively shorter flow times characteristic of the nozzle and
regions downstream.

10




The right plot of Fig. 7 shows the dynamic response for f =1000 Hz and 4=0.1. At this
lower frequency, the response lags the input much more modestly, and the overall trends in
amplitude are preserved from the 5000 Hz case. As the flow times are more comparable to
the oscillation period in this case, the overall lag of the injector is much more modest.

115 115
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g 100 g 100
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Figure 6. Raw input (left) and response (right) for initially disturbed inflow velocity; the oscillation
frequency and the amplitude were set as f =5000 Hz and 4 =0.1, respectively.
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Figure 7. Dynamic response through a classical swirl injector, which was investigated in velocity
response; the oscillation frequency and the amplitude where set as f = 5000 Hz, 4=0.1 (left), and

f=1000Hz, A=0.1 (right), respectively.



3.2 Hydrodynamic Modeling of Swirl Injectors with Multiple Rows of Tangential
Channels

Modified model for dual channel injector
Consider a swirl injector with two rows of tangential injectors separated from each other
by a distance L (Figure 8). We assume that the response of the tangential channels and

nozzle are unchanged (with respect to single row of inlets) with the introduction of another
row of inlet. Also the any modification needed due to the ‘vorticity’ effect in the vortex
chamber is neglected as it is found to be negligible. However the interaction of the surface
waves in the vortex chamber has to be accounted for. See Richardson® for a detailed analysis
of a two channel swirl injector.

The phase shift associated with the distance between the two inlet channels Ly is given by,

ol
g =—

7
Where angular velocity, @ =27 f and V,, is the wave velocity in the vortex chamber.

(3.11)

wy

We can use the principle of superposition to examine the influence of reflected waves in
the vortex chamber of any arbitrary length. Let us consider an initial wave in the vortex
chamber at inlet ‘a’ given by

&y = N0 (3.12)
Where A, is the initial height of the wave due to the perturbation in the inlet ‘a’. Near the
nozzle this wave travels a distance of L, (length of Vortex Chamber) and becomes,
B (3.13)
Where ¢, the shift angle is associated with traveling L, distance and 'vg, is the reduction

in the amplitude due to viscosity v . A part of this wave gets reflected which is given by,
(2], =Tt (3.14)

Figure 8. A classical swirl injector with two inlets at locations ‘a’ & ‘b’ separated by a distance L,

Where IT is the reflection coefficient. This reflected wave changes in the following
manner when it travels a length L, to reach the closed end of the Vortex Chamber

B g i (3.15)

This wave is reflected completely from the closed end and reaches the nozzle,

12




A N (3.16)
The reflected wave will be,
(&), = [T o e ot ea (3.17)

And so the waves reflect back and forth until their amplitudes become negligibly small.
Using the principle of superposition we have the following wave near the closed end of the

vortex chamber,

:“h _ A” Z H”(:"((I)’-ZWV)-ZHMV (31 8)
n=0

Near the nozzle,

gm _ A“ZI—Inel((z)l—(2n+l)¢v)--(2n+|)u¢v (3.19)

n=0
Similarly we can derive equations for surface waves in the vortex chamber due to the

perturbations in the inlet channel ‘b’.
Then, using the principle of superimposition we can compute the wave near the head end

of vortex chamber as follows

5;‘.;, _ A“ i I—Ine:((ul-2n¢‘,)-2nu¢‘_ + Ah i I—Inel(ml-?.nqpvJrq;),r)-'.’nuqﬁvéfug;)'r (320)

n=0 n=0

Similarly near the nozzle inlet we havc

5‘." _ A“iHne'(ﬂ)’-(2"+l)¢,-)-2"U¢v +AhiI-Inel(wl-(2n+l)¢v+¢‘.)-(2n+1)u¢,+u¢‘.

n=0 n=0

(3.21)
The above two equations are used in computing the response of the dual channel injector.

A dual channel swirl injector was analyzed using the modified linear model and compared
with computational results generated by BEM code described in section 1l usin% oscillation
pressure boundary conditions. An injector currently being tested by Miller*' at Purdue
University was used as basis for this study (Table 4).

Inlet radius of tangential

channel R, =0.454 in
Radius of nozzle R =0.454 in
Radius of vortex chamber R =0.454 in
Radius of tangential channel R, =0.0175 in
Length of tangential channel L, =0.359 in
Length of nozzle 5, =0:0 i
Length of vortex chamber L, =0.4767 in
Length between two channels L =0.0999 in
No of inlet channels n=§

V, =913 in/s

Inlet velocity

Table 4. Design parameters of a dual channel swirl injector



Since the injector to be analyzed is an ‘open’ injector that is the radius of vortex chamber
and nozzle being equal further modification where required to the existing model. The effect
due to reflection coefficient T1 was eliminated (set to a very small value) and the nozzle
length was set to an insignificant value. The flow was shared equally among both the inlet
channels.

The linear model shows a local minima around 1344 Hz (Figure 9,10). This frequency

corresponds to the distance between the two inlets L, =0.1in. The amplitude of response is
never greater than unity; this is a feature of the ‘open’ injector which makes it more attractive
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o
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Figure 9. Amplitude vs Frequency for dual channel swirl injector
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Figure 10. Amplitude vs frequency for different combinations of flow through the two
sets of inlets
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option over the ‘classical’ swirl injector. The dual channel injector is much more stable than
the single inlet design due to the destructive interference of the surface waves in the vortex
chamber. The computational results seem bounded by the single and dual channel analytical
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0.144

—O—Series1

Amplitude amplification factor

0.142

0.14 = T % % 3 5 v v <
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Perturbation in chamber pressure (%)

Figure 11. Amplitude vs perturbation

analysis for the same design parameters.

At low frequencies (< 1000 Hz) the interference of surface waves is more prominent
owing to longer wavelengths and fewer waves in the vortex chamber. However at higher
frequencies the computational model shows a diminishing effect of the two channel inlet
probably due to decreasing wavelengths of the surface waves and probably the simple dual
channel analysis seems inadequate to capture all the phenomena in the vortex chamber. Also
the non-linear effects are not being accounted for in the theoretical model.

The amount of mass flow rate (Fig. 10) was varied among the two sets of inlets. A 50-50
split shows to the most stable combination with clear local minima at 1344 Hz. Other
combinations are a little less stable than the 50-50 split and also don’t show any clear local
minima.

Fig. 11 shows BEM results for amplitude amplification factor (ratio of outflow to inflow
perturbation magnitudes) as a function of chamber pressure perturbations for the frequency of
2000 Hz. As we can see even 80% perturbation causes nonlinearity of just above 5%.



3.3 Boundary Element Method (BEM) Acceleration using ScaLAPACK Utility

Assuming the Runge-Kutta time integration scheme, the BEM calculation requires the
solution of the large-dense system of linear equations for four times at every time step.
Computational cost on solving this matrix system is fairly expensive. Current BEM codes
developed within the research group have used LU decomposition and SOR(Successive Over
Relaxation) to solve the large-dense matrix system. Although SOR has been a quite
successive method for solving larger matrix systems(over 1000 nodes), it has not been fast
enough to get the gnd convergence for high Weber number jets. A small As(grid size) has
been required to ensure the exactitude of computation in this case, so that computational cost
of BEM based on SOR has been quite high. Therefore, it has been necessary to modify the
matrix system solver in BEM.

The fully populated square matrix gives BEM codes a unique characteristic compared to
the banded structure present in classical CFD codes. Classical CFD codes usually accomplish
the acceleration by the use of sparse matrix inversion schemes and parallelization; dividing
the computational domain into smaller matrices that are distributed to a set of CPUs. In
addition, BEM atomization problems are distinguished by computational domains that
increase with time, which yields different size matrix system at every time step. In addition,
BEM matrices for fluids problems of this nature are generally poorly conditioned, i.e. not
diagonally dominant, thereby further complicating inversion processes. These issues make
the matrix inversion in BEM fluids codes quite challenging. To improve performance of
current codes, the ScaLAPACK utility was investigated as an aspect of the current work.

Scalable Linear Algebra Package (ScaLAPACK) is a set of library for distributed memory
MIMD(Multiple Instruction stream, Multiple Data stream) parallel computers developed by
the ScaLAPACK project42. ScaLAPACK provides routines for dense and band system of
linear equations, linear least squares problems, and eigenvalue and singular value problems.
The large-dense matrix system solver in ScaLAPACK implies Block and Parallel LU
Factorization; blocked submatrices from original matrix are distributed to a set of CPUs and
then solved by LU Factorization. ScaLAPACK accelerates BEM significantly and finally
shows a good grid convergence for SMD(Sauter Mean Diameter).

The test for the comparison of ScaLAPACK and prior successive overrelaxation(SOR)
methodologies have been completed. The acceleration obtained by ScaLAPACK relative to
SOR 1is shown in Fig. 12. This test is done for matrix systems obtained by test-run of BEM
code on our current HPC(High Performance Computing) cluster which has 2.4 GHz AMD
Opteron Quad Processors onevery computational node. As ScaLAPACK project suggests that
the maximum performance is achieved when 1000x1000 matnix is set on one CPU,
1000x1000 matrix system is solved most rapidly on I1x1 CPU. 2000x2000 matrix system
shows best performance on 2x2 CPUs(total 4 CPUs). BEM often yields a matrix over
2000x2000 so that it is expected that ScaLAPACK will significant advantages over SOR for
very large problems.

The time taken to run the entire code using ScaLAPACK has been compared to code using
SOR. The run time of BEM code for the simulation of Rizk and Lefebvre’s experiment™ is
shown in Fig. 13. When As is 0.016, BEM based on ScaLAPACK takes 13.2 days but BEM
based on SOR can not simulate the case due to computational constraints. Therefore, it has
been confirmed that relatively large grid cases can be simulated within a short time relative to
SOR with the aid of ScaLAPACK and small grid cases which can not be simulated by SOR
can be simulated using ScaLAPACK. Figure 14 demonstrates convergence of the scheme for
conditions consistent with Rizk and Lefebvre’s experiments*’. Prior simulations with SOR
could not get the grid convergence for SMD due to exhorbitant run times.
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Using Ponstein’s linear analysis for a rotating column, rings pinched from an axisymmetric
computation can be fractionated into droplets to provide a quasi-3-D simulation of a spray.
Limited prior work has shown some success using this approach with modest grid sizes.
Figure 15 and 16 depicts some current simulations using the methodology. In the image on
the right of Fig. 15, over 23,000 drops are produced. Approximately 80,000 drops are
produced in the current simulation of Cousin ef al’s experiments*, 3D visualization of this
simulation is presented in Fig. 16.
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Figure 12. Acceleration by ScaLAPACK for various matrix sizes with various
number of CPUS(t;0x is time taken by SOR, tsu apack is time taken by ScaLAPACK)
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t=5.0s, As =0.028 ) t=5.0s, AS=0.016

~4

t=7.0s, As =0.028, Ny = 2,700 _ t=7.0s, As =0.016, Np = 5,400

t=9.0s, As=0.028, Ny = 8,300 1=9.0s, As=0.016, Ny = 23,200

Figure 15. Vanation of the flow field with time, comparison betwecn two cases; the left

1s for As = 0.028 and the right i1s for As = 0.016 (Nj, is the number of drops, Drops produced after the
flow field is fully developed are only included in this figure.)



Figure 16. 3D visualization of the simulation of Cousin et al’s Injector #04 (1=10s. As = 0.016,
Np = 80,000, The whole drops produced in the simulation are included in this figure.)
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3.4 Boundary Element Method (BEM) Development and Dynamic Response Studies
for Swirl Injectors

Under AFOSR sponsorship, we are performing boundary element simulations to determine
the nonlinear dynamic response of swirl injectors utilized in many liquid engine systems.
Highly compute-intensive work is ongoing to determine injector massflow response
(amplitude and phase) over a wide range of pulsation conditions and orifice geometries.

This year’s work was focused on the analytical revision of existing codes computing the
dynamic response of swirl injectors of a typical design shown on Figure 17.

Figure 17. A classical swirl injector noting nomenclature used for design variables

Since no experimental evidence exists on how the pulsations of mass flow rate at the
injector inlet or of the combustion chamber gas pressure correlate with the pulsations of mass
flow rate at the exit orifice, work by Bazarov” is used as the only available reference for
validation of BEM results. Bazarov’s theory is linear and is based on the assumptions that the
flow has essentially a free vortex distribution of tangential velocities, is incompressible and
inviscid. It predicts that two types of waves should exist on the vortex free surface. The first
type results from the fact the film adjusts its thickness to accommodate the fluctuating
incoming mass of liquid. The second type results from the idea that as the inlet velocity or the
back pressure is changed, the different layers of liquid start to rotate with different spceds.
The centrifugal forces associated with this process cause the slower moving particles to move
towards the vortex core surface and the faster ones to the walls, which generates the so called
vorticity waves. Both types of waves propagete within the vortex chamber on the core surface
and get refracted back and forth by the head end and contraction section walls of the vortex
chamber, see Figure 19. Studies have shown that the vorticity waves have much stronger
effect on the dynamic response than the first type of waves’. A corresponding linear code®’
had been in use which incorporated the equations of the linear theory. Two types of injectors
are being investigated: single channel, Figure 17, and dual channel, Figure 19.
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Figure 18. Single channel swirl injector dynamic response due to linear theory.

A typical correlation between inlet and exit flow pulsations produced by linear code for a
single channel injector is shown on Figure 18. Here the response is presented as a transfer
function

swinj =——Q7 9, (3.22)
P./ D,

where @, is the average mass flow rate at the exit orifice, p. is the average combustion

n

chamber gas pressure and primes denote the fluctuation of these quantities given by

_ max[]— min[]

2 (3.23)

i)

According to the linear theory, in the situation when two inlet channels are present, some
distance apart, the vorticity waves generated by both inlets, start to interact, causing the
injector response to have minimums at certain frequencies of flow disturbances®’. This
phenomena occurs due to cancellation of the waves which are moving in opposite directions
and phases, see Figure 19. The response compared to the response calculated by the BEM
code showed that the minimums do not match. A typical comparison for the dual channel
response for the case when chamber gas pressure is being pulsated within 37% from its
average value is shown in Figure 20.
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Figure 19. Dual channel injector schematic.

Most recent studies have been done to find the reason for this mismatch. Several minor
problems were found in the linear code, for example, some nondimensional parameters were
used as dimensional, etc.. Furthermore, the graphical dual channel BEM results depicting the
instantaneous axial and radial coordinates of the points on vortex surface, did not show any
apparent occurrence of the surface waves. As disturbance frequencies varied, the surface
came to a steady flat form, similar to the static one shown on Figure 17, or close to thc mean
level shown on Figure 19.

Total dual channel injector response
0.5 :
linear theory
0.45 BEM

0.4

0.1
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0 2 4 6 8 10 12 14 16 18 20
f, kHz

Figure 20. Dual channel response comparison between BEM and linear theory.

In order to check if the code is responding accurately to small discrete changes of inflow
conditions, a test was conducted where the inlet velocity was changed in the form of a singlc



pulse. Figure 21 shows the flow development consisting of the transient, steady and pulsed
parts in terms of inlet and exit mass flow rates. The zoomed in picture of the pulse shows that
the nozzle exit disturbance is much smaller compared to the inlet one. This also implicitly
tells us that the amplitude of surface waves on the vortex core stays negligibly low.

Therefore, the initial single channel version of the BEM code was revised to investigate
the governing equations, with particular focus on the Bernoulli’s equation, Table S, which
serves as dynamic boundary condition on the liquid-gas interface.

One of the reasons for the decrease of surface wave amplitude is the artificial viscocity,
given by all terms having «, and v,. In previous versions of BEM code computing non-

swirling flows the viscocity was modelled by means of superposing a potential vortex ring on
a uniform flow of liquid column®’. In the current version the viscous terms are still present in
exactly same form. But since the flow is swirling then the way for modelling the viscocity
should also be revised.

Pulsed response of mass flow rates
1.6 ;

1.4

1.2

0.8
1.145

1.14
1.135
113
0.4 1.125 -
1.12
1.115

mass flow rate

0.6

0.2 inlet

nozzle Exit

0 2 4 6 8 10 12

Figure 21. Inlet and exit mass flow rate responses to the pulsed inflow.

Another reason for small amplitude of surface waves is related to the main term
responsible for the rotation of liquid given by

Pl
1{ a;Q
=l 2000 | (3.24)
20 r

where g, is the distance from injector axis to the inlet channel axis, €, is the angular
velocity at a, and r is any other radius. Here the angular velocity is computed as

q,=Y%0 (3.25)

4

(28]
(98]




where U, (¢) 1s the current inlet velocity. This means that as inlet velocity is changed, every

infinitesimal slice or disk of liquid perpendicular to the injector axis has same angular
velocity Q, at a,, which causes equal free vortex tangential velocity distribution for all of

them, see Figure 22. This corresponds to the situation when the whole liquid body would
respond instantaneously to the change of inflow conditions. Since radial velocities are much
lower than tangential or axial ones in a swirl injector flow, then any disturbance of the inlet
velocity affects either tangential or axial velocities on the vortex surface. Also, the small
magnitude of radial velocities leads to the situation that the points on the vortex core have
approximately same radial positions and therefore, the same tangential velocity, due to
previous reasoning. Then, in this case, the disturbance of the inlet velocity could result only
in the the change of axial velocities of surface points, which also visually leads to the absence
of waves.

In reality, considering the flow is close to inviscid, each particular disk should have its
own unique tangential velocity distribution which corresponds to the inlet velocity existed at
the instant of time when this slice was right at the inlet, or a remembered inlet velocity. And
each of these disks should retain its tangential velocity distribution as it moves from inlet area
to the exit, see Figure 22.

Conclusively, to address these issues, the current single channel BEM code is being
modified in such a way that the viscous effects are removed, and the liquid vortex is modeled
as a collection of disks, each having its own tangential velocity distribution.

Dg_ 1{[%1, j {% ﬂ
Dt 218 ez 7 or ' '

This is %(u2 +v2) part in [24, eq.(4.12)],

where ©, and v, terms come from viscous vortex ring treatment [23, eqs.(3.55)].

- [%m )u +(@+v )
oz ") \or V)7

This is —u, -u, partin [23, eq. (3.56)].

2 r

This is —%wf part in [24, eq.(4.13)].

2
+2(//a_+£. g_g.}._l_%
Os Rel ds® ror

These are weak viscous treatment terms from [25, eq.(7.7)].

£ We We

These are standard surface-wave problem terms [24, eq.(4.11)].

—

Table 5. Term by term analysis of Bernoulli’s equation.
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Figure 22. Disk representation of liquid column.

25




4. References

10.

11.

12.

18

14.

15.

16.

17.

Bayvel, L., and Orzechowski, Z., Liquid Atomization, Taylor & Francis, Bristol, PA,
1993,

Bazarov, V.G., and Yang, V., “Liquid-Propellant Rocket Engine Injector Dynamics,”
Journal of Propulsion and Power, Vol. 14, No. 5, Sept.-Oct. 1998, pp. 797-8006.
Yule, A.J., and Chinn, J.J., “Swirl Atomizer Flow: Classical Inviscid Theory
Revisited,” ICLASS-94, Rouen, France, July 1994.

Xue, J., Jog, M.A., Jeng, S.M., Steinthorsson, E., and Benjamin, M.A., “Influence of
Geometry on the Perfomance of Simplex Nozzles under Constant Pressure Drop,”
ILASS, Madison, WI, 2002.

Park, H., and Heister, S.D., “Nonlinear Simulation of Free Surfaces and Atomization
in Pressure Swirl Atomizers,” Physics of Fluids, Vol. 18, No. 5, 20006, pp. 052103~
052103-11.

Dash, S.K., Halder, M.R., Peric, M., and Som, S.K., “Formation of Air Corc in
Nozzles with Tangential Entry,” Journal of Fluids Engineering, Vol. 123, 2001, pp.
829-835.

Bussman, M., Mostaghimi, J., and Chandra, S., “On a Three-Dimensional Volume
Tracking Model of Droplet Impact,” Physics of Fluids, Vol. 11, 1999, pp. 1406-1417.
Pasandideh-Fard, M., Bussman, M., Mostaghimi, J., and Chandra, S., “Simulating
Droplet Impact on a Substrate Shape,” Atomization and Sprays, Vol. 11, 2001, pp.
397-414.

Han, Z., Parrish, S., Farrell, P.V., and Reitz, R.D., “Modeling Atomization Processes
of Pressure-Swirl Hollow-Cone Fuel Sprays,” Atomization and Sprays, Vol. 7, 1997,
pp. 663-684.

Bazarov, V.G., Fluid Injector Dynamics, Mashinostroenie Publication, Inc., Moscow,
Russia, 1979.

Yoon, S.S., and Heister, S.D., “A Fully Nonlinear Primary Atomization,” /5th Annual
Conference on Liquid Atomization and Spray Systems (ILASS), held in Madison,
Wisconsin, 2002, pp. 36-40.

Zhakarov, S.I., Richardson, R., and Heister, S.D., “Hydrodynamic Modeling of Swirl
Injectors with Multiple Rows of Tangential Channels,” Joint Propulsion Conference,
Sacremento, CA, July 2006.

Park, H., and Heister, S.D., “A Numerical Study of Primary Instability on Viscous
High-Speed Jets,” Computers and Fluids, Vol. 35, No. 10, pp. 1033-1045.

Park, H., Yoon, S.S., and Heister, S.D., “A Nonlinear Atomization Model for
Computation of Drop-Size Distributions and Spray Simulations,” International
Journal for Numerical Methods in Fluids, Vol. 48, No. 11, 2005, pp. 1219-1240.
Ponstein, J., “Instability of Rotating Cylindrical Jets,” Applied Scientific Research,
Vol. 8, No. 6, 1959, pp. 425-456.

Spangler, C.A., Hilbing, J.H.,, and Heister, S.D., “Nonlinear Modeling of Jet
Atomization in the Wind-Induced Regime,” Physics of Fluids, Vol. 7, No. 5, 1995,
pp. 964-971.

Kim, D., Yoon, Y., and Han, P., “Effect of Flow Condition and Geometry on Flow
Characteristics of a Swirl Injector,” 16th Annual Conference on Liquid Atomization
and Spray Systems, Monterey, CA, May 2003.

20



18.

19.
20.
21.
22
23.
24.
25.
26.

27.

28.

29.
30.

Bile

32.

33

34.
35

36.

3.

38.

S9l

40.

41.

Rump, K., and Heister, S.D., “Modeling the Effect of Unsteady Chamber Conditions
on Atomization Processes,” Journal of Propulsion and Power, Vol. 14, No. 4, 1998,
pp. 576-579.

Yule, A. J., and Chinn, J. J., “Swirl Atomizer Flow: Classical Inviscid Theory
Revisited”, ICLASS-94, Rouen, France, July 1994

Taylor, G. L., “The Mechanics of Swirl Atomizers”, 7 Int. Congress of Applied
Mechanics, Vol. 2., Sept 1948

Giffen, E., and Muraszew, A., “Atomization of Liquid Fuels”’, Chapman and Hall
London, 1953

Lefebvre, A. H., “Atomization and Spray”, Hemisphere, Washington 1989

Bayvel, L., and Orzechowski, A., “Liquid Atomization”, Taylor and Francis, 1993
Khavkin, Y. L., “Theory and Practice of Swirl Atomizers”, Taylor and Francis, 1989
Doumas, M., and Laster, R., “Liquid-Film Properties for Centrifugal Spray Nozzles”,
Chemical Engineering Progress, Vol. 49, No. 10, October, 1953.

Park, H., and Heister, S. D., “Nonlinear Simulation of Free Surfaces and Atomization
in Pressure Swirl Atomizers”, to appear, Physics of Fluids, 2006.

Reba, 1., Brosilow, C., “Combustion Instability: Liquid Stream and Droplet Behavior.
Part III: The Response of Liquid Jets to Large Amplitude Sonic Oscillations,” WADC
Technical Report 59-720, Wright Air Development Center, United States Air Force,
1960.

Harrje, D., Reardon, F. “Liquid Propellant Rocket Combustion Instability,” NASA
SP-194, 1972.

“Liquid Rocket Engine Injectors,” NASA SP-8089, 1976.

Bazarov, V., Yang, V., “Liquid-Propellant Rocket Engine Injector Dynamics,”
Journal of Propulsion and Power, Vol. 14, No. 5, September-October 1998.

V. G. Bazarov and L.A. Lyul'ka, ""Nonlinear Interactions in Liquid Propellant Rocket
Engine Injectors", AIAA 98-4039, 1998.

Bazarov, V. G., “Liquid-Propellant Rocket Engine Injector Dynamics”, Journal of
Propulsion And Power Vol. 14, No. 5, Sept-Oct 1998

Bazarov, V. G., “Fluid Injectors Dynamics”, Mashinostroenic Publication, Inc.,
Moscow, Russia, 1979

Vasin, A., et. al., United States Patent, US 6,244,041 B1, 12 June, 2001.

Yoon, S. S., and Heister, S. D., “A Fully Nonlinear Model for Atomization of High-
Speed Jets,” Engineering Analysis with Boundary Elements, V28, pp 345-357, 2004.
Park, H. B., “Flow characteristics of viscous high-speed jets in axial/swirl injectors”,
PhD Thesis Dept. of Aeronautics and Astronautics, Purdue University, 2005

Rump, K. M., and Heister, S. D., “Modeling the Effect of Unsteady Chamber
Conditions on Atomization Processes,” Journal of Propulsion and Power, V. 14, pp.
576-578, 1998.

Heister, S. D., Rutz, M., and Hilbing, J., “Effect of Acoustic Perturbations on Liquid
Jet Atomization,” Journal of Propulsion and Power, V. 13, No. 1, pp. §2-88, 1997.
Bazarov, V. G., “Fluid Injectors Dynamics”, Mashinostroenic Publication, Inc.,
Moscow, Russia, 1979

Richardson, R., “Linear and Non Linear Dynamics of Swirl Injectors” PhD Thesis,
Department of Aeronautics and Astronautics, Purduc University, August 2006

Miller J, K., “Experimental Study of Longitudinal Instabilities in a Single Elcment
Rocket Combustor”, MS Thesis, Department of Aeronautics and Astronautics, Purdue
University, May 2005

27




42.

43.

44.

45.

L.S.Blackford, J. Choti, A. Cleary, E. D’Azevedo, J. Demmel, I.Dhillon, J. Dongarra,
S.Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley.
“ScaLAPACK Users’ Guide”. Society for Industrial and Applied Mathmatics, 1997.
N. K. Rizk and A. H. Lefebvre, “Internal Flow Characteristics of Simplex Swirl
Atomizer”, Journal of Propulsion and Power, 6:528-533, 1986.

J. Cousin, S. J. Yoon and C. Dumouchel, “Coupling of Classical Linear Theory and
Maximum Entropy Formalism for Prediction of Drop Size Distribution in Sprays:
Application to Pressure-Swirl Atomizers”, Atomization and Sprays, Vol. 6, pp. 601-
622, 1996.

Yoon, S., “A Fully Nonlinear Model for Atomization of High Speed Jets”, PhD thesis,
Purdue University, 2002.

28




Appendices

Appendix A — Paper on Nonlinear Response of Swirl Injectors

Nonlinear Dynamic Response Modeling of a Swirl Injector
Renith Richardson', Hongbok Park®, James V. Canino’, and Stephen D. Heister*
School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, 47907, USA

A fully nonlinear axisymmetric model has been utilized to characterize the
dynamic response of a classical swirl injector and compared with the linear
results of Bazarov and Yang. A Boundary Element Method (BEM) model has
been developed to study the unsteady behavior under periodic inflow conditions
or pulsating chamber pressure. The difference between pulsating the inlet
velocity or the chamber pressure was insignificant, as the height of the wave on
the liquid surface in vortex chamber is negligible when compared to the
thickness of the liquid film. The amplitude response of the nonlinear model
shows a significant deviation from the linear model after a certain frequency. A
thorough analysis indicates that this phenomenon is dependent on the axial
momentum of the liquid. Nonlinear effects appear to be minimal as the strong
pressure gradients in the liquid film imposed by the swirling flow lead to
relatively small surface waves even under large excitation conditions. The
unsteady film formed by the atomizer is also tracked beyond the exit plane to
evaluate the periodic formation of annular ligaments which are in turn assumed
to form droplets using the linear analysis due to Ponstein.

Nomenclature
A = Amplitude
a = radius of nozzle
a, = radius to center of tangential chn.
B, = Bond number
D = droplet diamcter
ds = grid space
FN = Flow Number
f = Frequency
G = Green’s function
g = aceeleration due to gravity
k = wave number
A = length of nozzle
L, = length of vortex ehamber
Np = number of droplets
R, = radius to inlet ehannel
R¢ = radius of liquid surfaee
R, = radius of vortex chamber
r = radial direetion
N = distanee along the surface
SMD = Sauter Mean Diameter
U = jet speed
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47907, AIAA Associate Fellow
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u = axial velocity
v = radial velocity

We = Weber number
z = axial direction
AP = pressure drop
13 = vortex strength
Jij = surface slope
2 = direction of velocity
Op = cone half angle
P = density
o = liquid surface tension
) = velocity potential
IS = surface curvature
= growth rate
Subscripts
Q) = droplet property
(e = gas property
() = liquid property
O = total or general solution
) = vortex-ring property

I. Introduction

swirl injector or simplex/pressure-swirl atomizer is one of the more common devices used to atomize

liquids. The hollow-cone simplex atomizer creates angular momentum by injecting the liquid tangentially
into a vortex chamber. Since swirl injectors offer throttling advantages and give high thrust per element, they
have been utilized in aerospace propulsion applications over the past sixty years. In particular, injectors of this
type have seen substantial applications in rocket engines, particularly in engines developed in Russia. In
propulsion applications, both static and dynamic characteristics of the injector have been of great interest to
predict bulk performance and to understand instability mechanism related to the dynamic responsc of engincs
and their potential contributions or participation in combustion instabilities.

The steady-state performance of swirl atomizers has been addressed by a number of authors. Bayvel and
Orzechowski' utilize the principle of maximum flow to solve for liquid film conditions within the injector. The
approach has been used largely by Russian scientists and engineers studying simplex atomizers.” As a sccond
theory, Yule-Chinn® used axial momentum conservation principle to derive the equations of flow for a swirl
injector without the critical assumption of the principle of maximum flow. While the utilization of the principle
of maximum flow and axial momentum conservation are major differences between thesc two lincar theories,
predictions using the two approaches generally are in agrecment.

More recently, nonlinear simulations have been conducted to assess the mean performance of the atomizers
under a varicty of flow and design conditions. Xue et al.* and Park and Heister’ investigated the cffcct of
geometric parameters on a simplex fuel atomizer; using the Arbitrary Lagrangian-Eulerian, and boundary
clement methods (BEM), respectively. Dash et al. studied formation of the air core in nozzles, Bussman et al.”*
for pressure-swirl atomization in the near field and Han et al.’ for hollow-cone fuel sprays under stcady inflow
conditions.

Therc have been very few works in the literature that have focused on the dynamic aspects of these injectors.
Pioncering efforts in this area are attributed to V. G. Bazarov, who developed the initial lincar treatment in the
1970s'® and later published the work in a paper co-authored with V. Yang® in 1998. This latter contribution has
provided a first glimpse of the complex dynamics of the simplex element for many rcaders in the Western
world.

Since the element has a gas core, it responds to the instantaneous chamber pressure as this leads to changes
in the pressure drop through the tangential channels. Waves are formed on the free surface in the vortex
chamber due to oscillating mass flow at the inlet and thesc waves arc at least partly reflected from the
convergent section leading to the nozzle and the remaining is transmitted into the nozzle. Vorticity waves:
comprised of regions of faster and slower swirling liquid, are also developed under unstcady chamber pressure
conditions. The linear model accounts for these mechanisms in an inherently inviscid one-dimensional treatment
resulting in a transfer function that relates pressure pulsations in the chamber or feed system to massflow
pulsations delivered by the element.

In the present work, we apply an inviscid, axisymmetric BEM treatment to provide a nonlinear,
multidimensional-flow capability for simulating swirl injector dynamics. The dynamic responsc of a single inlet
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classical swirl injector is computed for a range of perturbation frequencies of the chamber pressure. Results arc
compared against the existing linear theory and the presence of nonlinear behavior, multidimensional effects and
other phenomena are analyzed over a variety of operating conditions. As the BEM methodology permits
computations beyond atomization events, studics are conducted to assess ligament and droplet sizes for unsteady
inflow conditions. The model is described in the next section, followed by discussion of results and conclusions
madc from the study.

II. Model Description

Figure | provides a schematic of a simplex atomizer noting the fluid injection via tangential channels at the
head end of the vortecx chamber. The gas core develops naturally as a function of the vortex chamber diameter,
inlet massflow and the degree of swirl imparted to the fluid via the pressure drop imposed from the injection
manifold. The contraction to the nozzle facilitates acceleration and thinning of the film to provide a conical
shect that breaks up into a spray. Key dimensions and nomenclature are noted in Fig. 1 for application to the
analysis and subsequent discussion.

Reference 11 provides a complete description of the basic model elements; only highlights will be presented
herc in the interest of brevity. An inviscid, incompressible, axisymmetric flow is presumed such that the flow
dynamics are governed by Laplace’s equation, V3¢ =0. The boundary element micthod utilizes an integral
representation of this equation to provide a connection between f values on the boundary, the local geometry,
and the local velocity normal to the boundary, g = d¢/0n , as follows:

ah(F)+ L[@—j—qa]d;:o M)

where ¢(7,) is the value of thc potential at a point 7, S is the boundary of the domain, @ is the singular

contribution when the integral path passes over the “base point”, and G is the free space Green's function
corresponding to Laplace’s equation. For an axisymmetric domain, the free spacc Grecen's function can be
expressed in terms of elliptic integrals of the first and second kinds and is a function solely of the instantancous
surface gcomictry. For this reason, a discrete representation of Eq. (1) can be cast as a linear system of equations
relating local ¢ and ¢ values. In the discretization, both ¢ and ¢ are assumed to vary lincarly along cach clement,
thereby providing formal second-order accuracy for the method. Since the resulting integrals do not have exact
solutions in this case, Gaussian quadrature is used to maintain high accuracy of integration and prescrve second-
order accuracy overall.

While this governing equation is linear, nonlinearities in these free surface problems enter through the
boundary condition at the interface. The unsteady Bernoulli equation provides a connection between the local
velocity potential and the surface shape at any instant in time. Prior formulations'' have provided a derivation of
this result suitable for implementation in a Lagrangian surface tracking environment. For the swirling flow,
modifications are required to account for the centrifugal pressure gradient created by the swirl. Without swirl,
the dimensionless unsteady Bernoulli equation is as follows:

Dp 1. . . K  Bo
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where ¢ is thc vclocity potential and & is the local surface curvature and the Weber number
(We = pU?a/o), Bond number ( Bo = p ga* /o) become the dimensionless parameters governing the problem.

Physically, this result is a Lagrangian form suitable for use for fluid elements moving with the local vclocity of
the free surface. The terms on the RHS of the cquation includc the effect of dynamic pressure, local gas-phasc
pressure, and capillary and hydrostatic pressure contributions respectively. In Eq. (2), the total surface velocity,
1, , can be computed via a supcrposition of the base axial flow in the injector (4,4 ) with a potential vortex

(@, .1, ). Letting u, v, and w represent axial, radial, and circumfercntial velocity components respectively, we
may writc:

b=¢+¢d u=utu, v,=v+v, w,=w+w, 3)

Supcrposition of a potential vortex can be achieved by starting with the complex potential:
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where z is complex variable, [ is vortex strength, and F is the complex potcntial.
The resulting velocity components for this flow are as follows:

27r

This vortex is irrotational as known since @ =V xi =0, except at 7 =0. Using Eq. (5), the total velocity in Eq.
(3) can be computed;

1
=—[u?+vi+n2]-w, w,
H (6)

| SRR |
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where
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Choosing the ideal tangential injection velocity (U), the orificc radius (a), and liquid density (p) as
dimcnsions, the dimensionless result can be written as,

2
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where the Weber and Bond numbers are dcfined as above. Since we have nondimensionalized against the
tangential injection velocity, U, the Rossby number does not appear cxplicitly in Eq. (8), but the last term on the
RHS of the equation corresponds to the circumferential pressure developed by the potential vortcx. In this
context, the radial location of the center of the tangential channel, a,, defines the dimensionless strength of the
vortical flow. The kinematic cquation for motion of points on the free surface can be expressed:

%=%cosﬂ—qsinﬂ %:Z—fsinﬂ+qcosﬂ 9)

where [ is the local slope of the wavc with respect to the horizontal direction. Equations (8) and (9) arc
integrated in time using a 4"™-order Runge-Kutta scheme to provide the evolution of the velocity potential and
the motion of the free surface.

The computational model was incorporated with oscillating chambcr pressure rather than perturbing the
inflow velocity to simulate a chamber pressure oscillation. This boundary condition will allow the mass flow in

the inlet channels to adjust naturally to the instantaneous pressure within the vortex chamber. The pressure drop
is assumed to be a sinusoidal function of time AP = APy +£sin(a)t), where steady state pressure drop is

calculated from the initial conditions,’
conditions (Eq. 10).

where the steady state pressure drop AP, is calculated using initial

r%)can R:%r
ARyasy = ——Z e (10)
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The mass flow rates at thc nozzle exit plane can be computed using is computcd using the methodology
described in Ref. 18 is used to calculate the velocity potential and its derivatives at the interior nodes. It involves
the development of integral equation for Green’s function followed by the integration and the calculation of the
solution for unknown values of velocity potential and its derivatives. The dcrivative of the velocity potential is
then used to calculate the nozzle exit mass flow rate.
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For long integrations or resolution of highly distorted surfaces, points on the free surface will tend to bunch
in regions of higher curvature as a result of the free-surface motion. For this reason, the points on the free
surface are redistributed at each time step using a cubic spline fitting of the instantancous shape. The Laplace
cquation is solved to update velocities and the process is marched forward in time. Formally, the resolution of
the scheme is second-order in space and 4™-order in time, but surface curvature and capillary forees are resolved
with 4™-order accuracy given a set of points defining the instantaneous shape."'

As the surface forms a conical film when it exits the nozzle, instabilities result in the formation of annular
ring-shaped ligaments. A pinching criteria is used wherein the ligament is physically separated from the parent
surface if nodes on cither side of the film lie within 2/3 grid space of each other. Prior studies'™" using this
criterion indicate an insensitivity to the resultant ligament size using this approach. The droplet diameter after
pinch-off is calculated from the lincar theory due to Ponstein.'”” The growth ratc, o, was related to the wave
number of the disturbance, 4, as follows:

I (ka,)
1, (ka,)

. o A
w? = (1-#2a?)+| == |(ka.) (1)
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where a, and [, are the radius and the circulation of the vortex-ring, respectively, and [/, and /; arc modified
Bessel functions of 0™ and 1 order. When [T, =0, this result reduces to the classic Rayleigh result for
instability of a liquid column. We have assumed that a, is much smaller than the nozzle radius, a which requires
ka, £1.0 for application of this analysis. The equivalent circular diamcter of the ring-shaped ligaments is used
to determine the appropriate a, value for cach ring. Using Ponstein’s result, the & value that maximizes o is
determined for each ring pinched from the parent surface. Droplets are assumed to be formed instantancously
from this initial condition and the initial velocity and position of each droplet is determined assuming they are
uniformly distributed about the circumference of the ring. The output from this computation is then used as the
input of the droplet tracking program. Newton's 2™ law is applied to deseribe the motion of a droplet assuming
aerodynamic drag to be the only external foree acting on a droplet.

du 1 = amN(EL
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where A is the projected arca of a droplet (#D?/4), mp and i, are droplet mass and velocity, respectively.

Recent calculations’ have shown good comparison with measured film thicknesses and some limited
comparison with Sauter Mcan Diameters from sprays formed from these atomizers.
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Figurc 1. A classical swirl injector noting nomecnclaturc uscd for dcsign

5. Baseline Case Simulations
Figure 1 provides a to-scale representation of the baseline injector geometry that was analyzed. This
monopropellant swirl injector design was derived using the procedure outlined in Ref. 1 to deliver 9.07E-2 kg/s
of water at a pressurc drop of 0.69 MPa. 1t has a nominal total spray angle of 90° and the film thickness
computed to be approximately 0.43 mm at the nozzle exit. The injector geometry for this design is summarized
in Table 1 below:
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Table 1. Assumed  Baseline
Atomizer Simulations

Radius to Center of Tangential Chn, a,

Radius of Nozzle, a

Radius of Vortex Chamber, R,

Radius of Tangential Channel

Length of Tangential Channel

Length of Nozzle, L,

Length of Vortex Chamber, L,

No. of Inlet Channels

Inlet Veloeity

Geometry

for

=3.226 mm
=2.151 mm
=4.234 mm
=0.643 mm
=1.516 mm
=1.500 mm
=4.547 mm
=4

=17.50 m/s

Swirl

Sinee the BEM computation assumes an
axisymmetrie domain, the inflow from the
four tangential channels had to be
approximated with a cylindrical passage
having the same total inflow area. Using this
approach, the inflow veloeity is replicated.
The length of the channel was set to replicate
the overall flow time the fluid spends in the
tangential channels. The liquid density of
1000 kg/m’, injection velocity of 17.50 m/s,
and nozzle radius of 2.151 mm scrved as the
basis for nondimensionalizing all other

parameters.
Figure 2 shows a typieal eomputational

grid employed in the studies. The mass flow is speeified on the inlet boundary or the pulsating ehamber prcssure
condition 1s speeifed; nodes on solid walls are subjeet to the flow tangeney eondition (¢ =0), and nodes of the

frcc surface are subjeet to the Bernoulli eondition derived in Eq. (8). The node lying at the free surfaee junetion
with the head-end of the vortex chamber is treated as a moving node such that the frec surface remains
perpendicular to the wall at this location. The grid spacing along the head-end of the vortcx chamber is
stretehed/eompressed to accommodate movement of the corner node. Using this treatment, the gas core radius
evolves naturally as a simulation result from an arbitrary initial eondition.

In Ref. 5, we eompared nonlinear steady-state computations with the linear theory for a varicty of parametric
injeetor designs ineluding the baseline geometry summarized in Table 1. Results were generated for various
grids thereby demonstrating convergence and accuracy of the model. These grid tests showed no diseernable
difference in eore radius, film thiekness, veloeities, and jet half angle, for the meshes studied from
ds =0.020 to 0.040 . Computed film thieknesses also show exeellent agreement with experimental rcsults and
limited eomparisons of computed drop sizes with measured data show good agreement. A typical numbcr of
nodes that evolve for subsequent calculations is 250 nodes with the grid space of ds =0.032 but the number of
points inereases with time up to 900 nodes due to inereased jct length. In addition, the simulation time for a
dynamic response computation takes typieally about 2 weeks on the 1.0 GHz Athlon CPU uscd in the modeling.

The stcady-state results show
surprisingly little nonlinear effects and the
core radius, nozzle exit film thickness, and
jet half angle were nearly identical for both
the nonlinear ealeulation and the linear
theory for a wide range of designs. The one
cxception to this result is for nozzles that
are short; in this case the linear theory
tends to over predict the spray half angle
and under prediet the film thiekness
relative to the model ealculations. Table 2
shows the extent of agreement between the
two BEM ealeulations (using perturbing
inflow velocity and the other using
pulsating chamber pressure incorporating
Ref. 18 for solution at interior nodes) and
the lincar theory for the baseline eonditions
summarized  previously. The  minor
differences between them are attributed to
the limitations of the methods employed in
calculating these parameters and to the
aecurate ealculation of fluid properties at
interior nodes rather than the difference in
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Figure 2. A 2-D axisymmetric grid system used to model

a swirl injector.

the specified boundary condition. This is further eonfirmed, as will be discussed in a later section, by the fact
that the change in core radius in the vortex ehamber due to fluctuating chamber pressure is negligible compared

to the thickness of the liquid film.
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Table 2. Calculated result comparison against the theoretical result of V.G. Bazarov'’

Theoretical result BEM (perturbing BEM (perturbing chamber
inflow) pression
Core radius (r,) 0.707 0.705 0.700
Film thickness (/1) 0.200 0.205 0.204 .
Half spray angle 45° 45.5° 45.5°
Total Nozzle entrance - 20.7 (at wall) 20.5 (at wall)
Velocity 11.7 (at free surface) 11.6 (at free surfacc)
(m/s) Nozzle exit - 24.3 (at wall) 24.3 (at wall)
21.0 (at free surface) 21.03 (at free surfacc)
Outside injector 36.09 36.12(z=5.04, 36.10(z=5.04,
r'=2.78) r=278)
Axial Inlet channel 17.50 17.50 17.56
Velocity | Atnozzle center 17.37 17.45 17.51 T
(m/s) Outsidc injector 26.26 26.26 26.3

III. Results and Discussion

D. Static Characteristics Analysis

The geometry provided in Table | served as a baseline condition for the computations. In a steady chamber
pressure condition, the radial/axial velocity profiles on both upper and lower fluid surfaces are compared against
theoretical values in Fig. 3. Results tend to asymptotically approach the quasi-1-D theoretical values as one
moves far away from corners. Figure 4 also shows the free surface shape inside the injector as well as the final
jet shape (at ¢ =12) with shed droplets. The liquid core evolves naturally as a part of the calculation as does the
conc angle formed by the conical sheet exiting the orifice. Under steady flow conditions, the shed droplets are
moving in the same direction as the parent jet and their size distribution is almost constant. The computed flow
properties for the steady injection case result in an SMD/a of 0.185, and a cone half angle of 46° with other
statistical properties summarized in Table 3.

Figure 5 provides a 3-D visualization of the spray evolution and the jet core structurc. The breakup length is
nearly constant after ¢ =5.0 and shed droplets are tracked downstream with the dircction angle of the parent
jet. The overall spray is qualitatively similar with that of actual experimental images.'® The initial ligament
pinching events lead to droplets that are dispersed somewhat from the final cone angle formed by the spray. This
is an artifact of the initial conditions selected for the simulation and not necessarily representative of the chaotic
startup observed during the chamber filling process of a real device.

Table 3. Statistical properties for a swirl injector

Properties
SMD/a 0.185
Np 1741
Dp/a 0.198
i U 1.21
v /U 1.26
6 (°) 45.8
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Figure 4. Final jet shape showing shed droplets for baseline swirl injector, at (" =12.0.

Figure 5. Dimensional view of the final jct shape computed for baseline conditions noted in
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E. Behavior under Dynamic Injection

The dynamie response was studied for the injector geometry shown in Fig. | and Table | at the bascline
injection velocity and pressure drop of 17.5 m/s and 0.69 MPa respectively. To compare results against the
theoretical analysis of Bazarov & Yang,” the velocity was interrogated at a variety of locations in the film.
Figure 6 shows locations for dynamic response analysis in our calculation. The detailed locations are as follows:

Pt1: Uy 2=0.258, r=2.665 ( at the channel inlet )
Pt 2: Ugamp: == 1495, r=1.968 ( at the chamber wall )
Pt 3y Uizt #=2.113; r=1.000 ( at the wall of nozzlc entrance )
Ptids Upsuesid B=2.798; r=1.000 ( at the wall of nozzle exit )
PtSs W z=5.036, r=2.789 ( outside the nozzle )
Two distinet approaches have been used
for simulation of unsteady flow conditions.
2 Initially, we utilized a forced excitation via
oscillation of the inlct masstlow. Since the
dynamics of the film thickness in the vortex
i chamber could lead to large amplitude
surface waves, this process can in principle
5| u P u_(Pt5) /,f' give results substantially diffc‘rent from the
& ~7 case where the gas pressure in the vortex
& U einedP12) 4 chamber was oscillating in time. For this
= il \'% V4 reason, a second approach was also
investigated wherein the oscillation was
U (Pt VnaeaulP14), imposed via an unsteady pressure in the
4o i SO W \0.--_?' vortex chamber. This latter approach is
i more realistic for dynamics induced by
combustion chamber pressure variations.
o e —— while the former approach is more
0 1 2 3 4 5 6 7 representative  for feced system based
z/a oseillations.
6.  Dynamic Massflow Simulations
. . . The dimensionless time in the
Figure 6. Selected locations for dynamic response

el . T computational domain is " =U/a-1, so the
analysis in a classical swirl injector. . ) S
dimensionless oseillation wave number

(@) for actual oscillation frequency (f) is as follows:

w'=ia7=i27rf=2'151E_3

x2xx f=7.7229E -4x% 12
U U 17.5 s s (12)

Then, for a given input oscillation frequcncy, the injection veloeity is pulsation can be written:
F(@")= Asin(@"t") (13)

where A is the amplitude of the massflow pulsation. In our study, the disturbanec is presecribed as a fluctuation
of the inflow velocity in the tangential channel, Eq. (13), or as perturbation of chambcr pressure as seen in Eq.

(14).
AP = APy .4, + Esin(0t) (14)

In addition, the inlet for the tangential channel is assumed as the circular cylinder in our axysimmetrie
simulation and its area is determined to have the same mass flow rate with the actual injector. In order to keep
the eonstant area for the same mass flow ratc throughout the tangential channcl, the channcl width at the tip and
the root can be caleulated:

R 4R}
Wi i = —————Wr oo , Where Wr o0 = —— 15
P 7 IR, (15)
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7. Dynamic Chamber Pressure Simulations
Here, the unsteady pressure drop across the film in the vortex chamber must be ascertained in order to
determine the instantaneous pressure drop across the tangential channels. From the radial momentum equation,

% = f%, where for the potential vortex: V5 = 5L . After integration, the dimensional pressure drop aeross the
liquid film ean be eomputed:
, i ke 1
Iy e ik S
87 | R RP

Substituting nondimensional eirculation I' =27z R, V, = 27 R, V,, we obtain:

Rv2(1 1) V(R
ap st 4 LA B0 g (16)
2 \R2 R} 2\R2

Assuming a constant stagnation pressure in the manifold and neglecting viscosity losses, Bernoulli's

p p 3 V2
equation gives the pressure drop across the inlet channel: AP, = 4.

So the total pressure drop across the injector is the sum of pressure drops across the liquid film and inlet
channel:

Vi R&
AP=AR =AP,=——2 (7
28 R
Knowing this pressure drop the inflow veloeity ean be computed as:
e RG o

in

Where the overall pressure drop in the system is assumed to be a sinusoidal function of time
AP = ABsicay +£sin(w1). The steady state pressure drop is calculated from the initial conditions:

(19)

Figure 3 shows a typical eomputational grid employed in the studies. The initial pressure drop is computed
from Eq. (12) based on the steady state solution for the core radius using constant inflow rate. This pressure
drop plus perturbation is further converted to massflow on the inlet boundary using Eq. (13).

F. Simulations Assuming Forced Mass Flow Pulsations

A series of simulations were eonducted using the unsteady massflow methodology outhined in Egs. 12-15.
An initial simulation was performed with a 10% massflow fluctuation ( A =0.1) at a frequency of 5000 Hz. At
lower frequencies, the dynamie simulation ean require long integration times in order to build up statistical
properties for drop sizing. In order to save computational cost, this simulation was restarted from the steady
state solution obtained at the time of 1* =5.0 and integrated in time until quasi-periodic behavior was obtained.
The input and nozzle exit veloeity histories are overlaid for the period 10 <¢* <20 in Fig. 7. The phase lag and
amplitude modulation of the input signal is evident from this comparison.

The dynamic response for a single eyele of the imposed oseillation is depieted at various points in the
injector in Fig. 8. The unsteady part of the signal is plotted at each location in order to assess wave amplitude
and phase shifts at various points in the flow path. In Fig. 8, the oseillation frequeney and the amplitude, for the
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plot on the left, were setas f =5000 Hz and A4 =0.1, respectively. The vortex chamber acts as an accumulator

and changes in massflow eause very little variations in vclocity at Pt. 2; the massflow variations lead to ehanges
in the size of the vortex core in this region. At Pt. 3 (nozzle inlet), a very large lag is notable and the amplitude
of the oscillation increascs as the fluid accelerates into the eontraction region. At the nozzle exit, the oscillation
amplitude is diminished somcwhat as the swirl velocity is increased. The signal actually appears to be leading
the input at this loeation for the conditions studied—this unusual characteristic is unique to swirl injectors with
large vortex chambers that ean cause large lags in response. The amplitude of the signal is attenuated further at
the nozzle exit and into the conical film with smaller phase lags noted in these regions due to the relatively
shorter flow times characteristie of the nozzle and regions downstream.

The right plot of Fig. 8 shows the dynamic response for f =1000 Hz and A4 =0.1. At this lower frequency,
the response lags the input much morc modestly, and the overall trends in amplitude are preserved from the
5000 Hz ease. As the flow times are more comparable to the oseillation period in this case, the overall lag of the
injector is much more modest.
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Figure 7. Raw input (left) and response (right) for initially disturbed inflow velocity; the

oscillation frequency and the amplitude were set as f =5000 Hz and 4 =0.1, respectively.
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Figure 8. Dynamic response through a classical swirl injector, which was investigated in

velocity response; the oscillation frequency and the amplitude wherc sct as f =5000 Hz, 4=0.1
(left), and f =1000 Hz, 4=0.1 (right), respectively.

G. Parametric Studies Assuming Chamber Pressure Pulsations

The dynamic responses of a single channel swirl injector, whose parameters are given in Table 1(baseline
injector), was analyzed using the lincar model developed by Bazarov and comparcd with the computational
results at various frequeneies. These responses are computed at the exit plane of nozzle of the swirl injector. A
nondimensional time step of dt =0.0005 along with a grid spacing of ds =0.032 was used for each of these
cases. An 8.4% perturbation of pressure, eorresponding to a massflow pulsation of 3.5% aeross the injector was
used in all our eomputations unless speeified otherwise.
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For the baseline injeetor operating at 0.69 MPa the amplitude response is shown in Fig. 9 and the
corresponding phase shift associated with it shown in Fig. 10. The amplitude response predicted by the
computational model is in close agreement with the linear results for frequencies less than 5 kHz. For
frequencies larger than 5 kHz the BEM model predicts a sharp drop in the amplitude of the computed oscillation
from that which is predicted by the linear theory, indicating that the injector is approximately stable at high
forcing frequencies. The computed phase shift (Fig. 10) shows a similar behavior, noting a reasonable
agreement with linear theory until the 5 kHz region, at which point w¢ sec a strong departure. A number of
studies have been conducted to establish the cause of this departure from the linear theory as outlined below.
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Figurc 9. Amplitude  response vs  frequency; Figure 10. Phasc shift in degrees vs.
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The baseline injector operating at 1.38 MPa was considered in order to quantify the effect of steady state
operating pressure on the BEM computed dynamics response deviation from the linear thcory. The Weber
number We =17,978 and Reynolds number Re = 53,171 are changed aecordingly. As pressure is doubled the
injection velocity changes by a factor of\/i, therefore V,, =24.75 m/s .

1. Effect of mean injection velocity

The amplitude responsc (Fig. 11) of the 1.38 MPa baselinc injector shows similar behavior as that of the
original 0.69 MPa injector. The computational results start to deviatc from the linear theory around 7 kHz,

which is what one would expcct in scaling velocities using the Bernoulli equation (3 kHz*2; 7kHz). By
plotting the amplitude of the response verses Strouhal number ( Shy = -”-‘;‘4) in Fig. 13, the two results lie on top

of onec another, indicating that the departure from linear theory is strongly dependent on the liquid injection
velocity. The computed phase shift associated with thesc shows (Fig. 12) a similar trend as that of the 0.69 MPa
injector except that the change in slope occurs at a frequency of 7 kHz.
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Nonlinearity of baseline injector

To determine whether the deviation in the amplitude response is dependent on nonlinear effects, the baseline
injector at 0.68 MPa was perturbed at 3 different frequencies to as much as 90% of the mean pressure drop.
Figure 14 shows the scaling of the massflow perturbation as a function of the amplitude of the pressure
perturbation indicating a very lincar dependence over the wide range of imposed unsteady pressure signals.
Even at 7 kHz which lies on the non-agreeing side of the frequency range the swirl injector exhibits linear
behavior. For this reason, nonlincar effects do not appear to be the cause of the difference between the linear
theory and the BEM computations.
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The lack of nonlinear cffects can be partly explained by the lack of any significant change in the wave height
in the vortex chamber when compared to the liquid film thickness (Fig. 15). A perturbation of up to 90% of the
mean pressure drop results in the liquid thickness changing by less than 3%. For this reason, there is little
difference between an imposed massflow pulsation vs. an imposed chamber pressure perturbation as the vortex
chamber responds very similarly in either case.

9. Effect of the inlet channel location and width

One of the main differences of the BEM model as compared to an actual swirl injector is thc way the inlet
channcls arc modeled. The tangential inlets of thc actual swirl injector are modeled as 2-D axisymmetric radial
inlet such that the mass flows are matched. A series of simulations were conducted to determine the effect this
difference in modeling would have on the overall response of the swirl injector. The location of the inlet channel
was moved very close to the head end of the vortex chamber (from10.6% to 1.5% of the vortex chamber length),
keeping all other paramcters fixed at baseline injector values. The amplitudc and phase response are shown in
Fig. 16 & Fig. 17 respectively. The minor discrepancies in the magnitude of the amplitude response can be
attributed to the different inlet location resulting in a different pattern of reflecting surface waves in the vortex
chamber. Howcver, the amplitude and phase rolloff (rclative to the lincar thcory) at 5 kHz is still readily
apparent.
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Figure 16. Effeet of amplitude response by Figure 17. Effect of phase shift response by

moving the tangential location closer to head end
of vortex chamber.

moving the tangential location closer to heuad
end of vortex chamber.

The width of the inlet channel (W7) was incrcased by an order of magnitude keeping massflow constant in
order to assess the effect of this variable. Figures 18 and 19 depict the amplitude and phase response for this
case as compared the baseline injector. Increasing the width reduces the inlet velocity by a corresponding factor,
therefore any dependence on the artificially imposed radial vclocity would be revealed. The amplitude response
(Fig. 18) for the 10 times wider inlet channel shows a similar trend as before with the deviation from linear
theory near 5 kHz. The lower magnitude of response is due to the lower pressure drop across the inlet channels
(the injector response is defined as the ratio of nondimensional mass flow perturbation to pressure perturbation).
The phase shift associated shows trends as seen before (Fig. 19). For this reason, thc axisymmetric modeling of
the discrcte number of inlet channels does not explain the discrepancies between the BEM results and the
theoretical results.
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10. Effect of the varying vortex chamber length

The length of the vortex chamber of the baseline injector was varied from 25-200% to check for
multidimensional effeets. As Fig. 20 shows, when the length of vortex chamber becomes larger than the liquid
thickness ( L, / h = 1) the amplitude response is no longer dependant on the length of the vortex chamber. Since
all previously discussed computations where performed for L,/h greater than unity, they are free from any
significant multidimensional effect.

1.4000 4
1.2000 & ¥ +35
o - +.3
«» 1.0000 -
S n T 2D
g 08000 -
= 4 £
2 i - 2 2 3
T 06000 4 B al
= T=a545mm.BEM | |
2 04000 | k= L
< a ——theory 11
0.2000 A . m L vh +05
0.0000 T T T T 0
0 05 1 1.6 2
Vortexlength/4.545
Figure 20. Amplitude responses of various baseline injectors with varving

vortex length L,.

11, Summary of parametric studies
These studies indicate that there are substantial differences between the 2-D eomputations and the 1-D lincar
theory over a range of frequencies and that the differences are not attributable to inlet ehannel modeling or
location, nonlinear cffeets, or multidimensional effects. The one parameter that does indicate a strong scaling is
the inlet flowrate or tangential channel injection velocity, and our belief is that the momentum required to turn
the tangential entry flow into the axial direction plays a strong role in the differences that are observed. The
linear theory does not account for this momentum exchange, and since it would presumably occur over a finite
time, there is an opportunity for it to cause an additional lag in the system thercby cxplaining the observed
amplitude/frequency dependence of the multidimensional simulation results. The flow turning phenomenon
would presumably scale with injection velocity, i.e., higher injection velocities lead to faster turning and this
trend is replicated in the parametric studics. The length scale associated with the turning is much more difficult
to assess. We have looked at a number of length scales including the width of the channels, length of the vortex
chamber and nozzle and the height of the film, but the overall scaling does not appear to be accurately replicated




considering any of these lengths. Obviously, this important finding needs further research to confirm the
hypothesis we put forward.

. Effect on Drop Size Distributions

A scries of simulations were conducted using an imposed massflow pulsation in order to assess the influenee
on droplet statistics under unsteady injection conditions. Table 4 shows statistical property variation for various
oscillation amplitudes at a frequency of f =5000 Hz . Figure 21 shows trends in drop size and number of drops

as the pulsation amplitudc is increased showing that increased amplitude pulsations lead to formation of smaller
droplets. The theory that droplet vaporization/combustion rates can increase under unsteady conditions has long
been considered in the combustion instability community and for classical swirl injectors, the recent calculations
show merit to this hypothesis. Jet breakup length decreases with oscillation amplitude, which means that the
breakup occurs faster before the jet is sufficiently developed. Interestingly, the cone angle also increases in this
case since axial velocity decreases largely with inereasing amplitude.

The resultant spray development under unsteady inflow conditions is depicted in Fig. 22, for f/ = 5000 Hz .
A=0.1,and t" =20.0. The alternate grouping of droplets (Klystron effect) attributed to alternating regions of
faster/slower fluid is readily apparent. Because we have considered a case where axial and radial velocities are

nearly equal (conc angle of 90 degrees), the pulsations do not lead to substantial “bushiness” in the conc, but
other cone angles may produce larger fluctuations in this quantity under unsteady conditions.

Table 4. Statistical properties according to the oscillation amplitude,

£ =35000 Hz
Amplitude 4=00 A=05 A=0.1 A=03
SMD/a 0.185 0.179 0.174 0.165
Np 1741 1910 2104 2948
Dpla 0.198 0.197 0.198 0.186
iip [U 1.21 1.20 1.17 0.93
¥ JU 1.26 1.22 1.24 1.26
6p° 45.80 45.47 46.71 53.64
0.190 3000
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Figure 21. Droplet size (left) and total number of droplets (right) variation with the oscillation

amplitude in dynamic response analysis of a classical swirl injector, /= 5000 Hz .

IV. Conclusions

A fully nonlinear model based on the boundary element method has been developed to assess the dynamic
response of classical swirl injectors. Forced excitation (pulsations of inlet flow) and sympathetic excitation from
oscillating downstream/combustion chamber pressure simulations have been conducted to ascertain the
nonlincar, multidimensional response function of the injector over a relevant frequency range. In addition, the
model has been used in concert with a linear stability analysis for ring breakup to assess droplet ficlds and drop
sizes produced under unsteady injection conditions.

While at low excitation frequencies, the multidimensional nonlinear BEM computations agrees well with the
1-D lincar theory, at moderate frequencies, there is a substantial departurc in the two treatments with the
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nonlincar rcsults giving lower amplitude and larger phasc-shifted responsc. A number of inquirics werc madc to
assess this behavior and the channel width/location, vortex chamber length, and pulsation magnitude (nonlinear
effects) were all ruled out as potential contributors. The rolloff behavior is strongly correlated with the injcction
velocity and it is belicved that the time and momentum exchange to crcate flow turning from tangential to axial
dircction in the vortex chamber plays a rolc in explaining discrepancies between the two models.

The dynamic response seems to contain very little nonlinear character and the massflow pulsations scale
lincarly with imposed pressure perturbation magnitude. For this reason, we see little differences between an
imposcd massflow pulsation and a sympathetic excitation via an unsteady downstream prcssurc. The vortex
chamber serves as an accumulator in either case and the dynamic flowrate resulting from either excitation
produccs very similar results. The pulsations in inlet flow are mainly manifested in vorticity waves within thc
vortcx chamber and the overall pulsations in the free surface are quitc modest—at least for the geometries and
flow conditions studied.

A scries of simulations were conducted to assess spray statistics undcr unsteady inflow conditions. These
simulations indicated a strong nonlinear dependcnce of droplet sizes/SMD values that tended to decrease as the
amplitude of the oscillation was incrcased. Visualizations of the resultant droplet field indicatcd a prominent
Klystron cffect with clustering of droplets into discrete regions with a wavelength dircetly attributable to the
pulsation frequency. The unsteady injection conditions led to a reduction in the film breakup length as well.

Appendix A. Theoretical result for dynamics of a swirl injector

V. G. Bazarov’s model’ provides the theoretical analysis method for dynamic responsc of the classical
injector as shown in Fig. 1. In this model, the tangential channel, the vortex chamber and the nozzle are
analyzcd independently and then combined to give the overall transfer function of the swirl injector. Then the
dynamic response of the classical swirl injcctor obtained by the I-Dimensional theoretical model is shown in
Fig. A.1 and A.2. Here the analyzcd injcctor has 0.69 MPa pressure drop with pure water and jet speed through
inlct is {/ =17.5 m/s as mentioned carly. Thesc results show the interesting characteristic of swirl injectors to
providc cither amplification or damping of the input disturbance. There is minimal phase shift at very low
frequencies, which indicates that the whole swirling liquid responds as a rigid body. As frequency increases,
there is an increasing phase shift along with dccreasing magnitude of the response. The analysis result provides
a good comparison with our calculated result by using BEM code. The thcoretically predicted response is shown
in Fig. A.1, which is obtained for pressurc pulsation in the feed system.

F T APAP

where [1:is defined as the response function of the swirl injector, AP is the pressure pulsation across the

injector, and ), which is the mass flow fluctuation at the nozzle exit. As I1: is complex, both the phase and

magnitudc of the response can be deduced from it. Figure A.2 shows the theoretically predicted dynamic
characteristic through each injcctor component. Thus the combined result of Fig. A.2 gives total characteristics
shown in Fig. A.1.
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Appendix B — Paper on Nonlinear Response of Multichannel Swirl
Injectors

Hydrodynamic Modeling of Swirl Injectors with Multiple Rows of

Tangential Channels
Sergey 1. Zakharov’, Renith Richardson® and Stephen D. Heister’
Purdue University, West Lafayette, IN, 47906

Analytic and nonlinear computations have been conducted to study the dynamics of
swirl injectors utilizing multiple rows of tangential inlet channels. The study is
motivated by the fact that the use of multiple rows of inlets provides a mechanism for
wave cancellations within the vortex chamber of the injector, thereby reducing injector
response when compared with a single row device. The existing linear inviscid theory
has been amended to account for the additional wave interactions arising from two rows
of channels within the chamber. In addition, a boundary element method technique has
been utilized to study nonlinear aspects of the problem. Results are presented for
numerous frequencies in order to characterize the overall response of this injector typc.

Nomenclature
Bo = Bond number
D, = doublet matrix element
G . Green’s function
P = pressure

normal velocity

=
I

R, = vortcx chamber radius

R, a, = inlct radius of tangential channel
R. = gas core radius

R, a = nozzle radius

Ly = length of tangential channcl

Ly = length between two inlets

i, = length of nozzle

Via = Inlet velocity

r = radial direction

s = distance along the surface

Sij = source matrix element

u = axial velocity

v = radial velocity

We = Weber number

b4 = axial direction

a = singular contribution in integral Laplacc cq. (Eq. 1)
B = surface slope

r = circulation

K = surface curvature

¢ = velocity potential, phase shift
(ol = liquid surface tension

yo, = density

I1 = response function

0] = angular velocity

& = equation of a surfacc wave

* Graduate Research Assistant, School of Aeronautics & Astronautics, 315 N. Grant St., Student Member
® Graduate Research Assistant, School of Aeronautics & Astronautics, 315 N. Grant St., Student Membcr
Professor, School of Aeronautics & Astronautics, 315 N. Grant St., Associatc Fellow.
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initial amplitude of wave
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Subscript

n = nozzle

v, ve = vortex chamber

T = tangential channel
k = head end

a = inlet ‘a’

b = inlet ‘b’

SW = surface wavcs

Vi = vorticity waves
Superscript

= dimensional quantity

perturbation quantity
= = mean quantity

I. Introduction
THE injector plays a critical role in defining the performance and stability limits of a liquid rocket engine and
remains as the one component that lacks predictive tools and design models that aren’t based largely/entirely on
the behavior of prior designs. The vast majority of prior instability problems have been solved chiefly by
making modifications to the injector; it is the component that designers can most rcadily usc to affect the
stability characteristics of the engine. The state-of-the-art in injector dcsign relies heavily on empirical data
from past designs and linear/empirical models of atomization, secondary atomization, and mixing proccsses.

The classical thcory of thc steady-state operation of swirl injectors has been published in numerous
contexts'”. These theoretical treatments generally assume a linearized, inviscid flow and provide simple
relationships for injector exit conditions (film height, velocity, and conc angle) as a function of fluid parameters
and injector design. The results of these modcls have been compared to experiment and tend to agree well for
low-viscosity fluids. Most recently, a nonlinear treatment has been developed to provide additional insight into
the steady operation of these devices®. While there is still fundamental understanding lacking for viseous and
non-Newtonian fluids, the steady operation of the swirl injector 1s fairly well understood at present.

The dynamics of swirl injectors have been much less studied. In combustion systems, the injector can
participate as an active element and this has motivated the limited analyscs that have becen conducted. Simple
drilled orifice response has been characterized in the 1960’s and 1970's”"" using lincar models. Because many
of their liquid rocket engines employed this injector type, thc Russians were onc of the early developers of
theories related to the dynamics of swirl injectors. Much of the published work stemiming from these efforts is
due to Dr. V. Bazarov and his collaborators'>'®. In these works, the waves formed in the vortex chamber due to
unsteady flowrate intcract with the convergent section forming the nozzle and transmit pulsations of massflow
as a result of cither forced excitation or passive excitation via an unstcady downstream pressure. Recently, a
patent appearcd for the injcctor style used in many of the Russian booster engines'®. This patent revealed a
design implementing two rows of tangential inlet channels fecding an open nozzle design injector in which the
vortex chamber has the same intcrnal diameter as the nozzle section. The design permits wave cancellations at
selected frequencies where the wavespeed and row spacing provide a destructive interference of waves
gencrated from the two rows of inlets. This design approach can be attractive to reduce injector rcsponse at
known acoustic frequencies for a given combustor dcsign.

The motivation of the current study is to amend thc linear theory to account for this design feature and to
construct a nonlinear model as a basis for comparison with the linear results. Both tools are then applied to a
candidate injector design to evaluate its performance over a range of frequencies. The following sections
provide descriptions of the computational model, the analytic tool, and results from exercising these tools for a
given injcctor design.
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II. Computational Model

A. BEM Method for a Swirling flow

Figure 1 provides a schematic of a classical simplex atomizer noting the fluid injection via tangential
channels at the head cnd of the vortex chamber. The gas core develops naturally as a function of the vortex
chambcer diamcter, inlct massflow and the degrec of swirl imparted to the fluid. The contraction to the nozzle
facilitates acceleration and thinning of the film to provide a conical shcet that breaks up into a spray. Key
dimensions and nomenclature are noted in Fig. | for application to the analysis and subscquent discussion.

Yoon and Heister'” and Park'® provide a complete description of the basic model elements; only highlights
will be prescnted herc in the intcrest of brevity. An inviscid, incompressiblc, axisymmectric flow is presumed
such that the flow dynamics are governed by Laplace’s equation, V*¢=0. The boundary element
method utilizes an integral representation of this equation to provide a connection between f values on
the boundary, the local geometry, and the local velocity normal to the boundary, ¢ =0¢/0n | as

follows:
ag (i) + L[aﬁi—g—qc;]duo (M

where @¢(7) is the value of the potential at a point ’_’; , 8 is the boundary of the domain, & is the

singular contribution when the integral path passes over the “base point”, and G is the free space
Green’s function corresponding to Laplace’s equation. For an axisymmetric domain, the free space
Green’s function can be expressed in terms of elliptic integrals of the first and second kinds and is a
function solely of the instantaneous surface geometry. For this reason, a discrete representation of
Eq.(1) can be cast as a linear system of equations relating local ¢ and q values. In the discretization.
both ¢ and q are assumed to vary hnearly along each element, thereby providing formal second-order
accuracy for the method. Since the resulting integrals do not have exact solutions in this case,
Gaussian quadrature i1s used to maintain high accuracy of integration and preserve second-order
accuracy overall.

While this governing equation is a linear, nonlinearities in these free surface problems eunter
through the boundary condition at the interface. The unsteady Bernoulli equation provides a
connection between the local velocity potential and the surface shape at any instant in timc. Prior
formulations'™"® have provided a derivation of this result suitable for implementation in a Lagrangian
surface tracking environment. For the swirling flow, modifications are required to account for the
centrifugal pressure gradient created by the swirl. The dimensionless unsteady Bermoulli equation is
as follows,

i =P __.’(_+&z
Y8 We We (2)

1.
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where ¢ 1s the velocity potential and « 1s the local surface curvature and the Weber number
(We=p Ua/c) and_Bond number (Bo=p ga’/c) become the dimensionless parameters governing the
problem. Physically, this result is a Lagrangian form suitable for use for fluid elements moving with
the local velocity of the free surface. The terms on the RHS of the equation include the eftect of
dynamic pressure, local gas-phase pressure, capillary, and hydrostatic pressure contributions
respectively. In Eq.(2), the total surface velocity, #,, can be computed via a superposition of the base
axial flow in the injector (¢, « ) with a potential vortex (4, ,u, ). Letting u,v,w represent axial, radial,
and circumferential velocity components respectively, we may write:

, Tangenrial Channel L7

~

Eu'{t:\' Chamber, f_\'-F .:H::J'('. f:' \\\Q‘
o)
o
Figure 1. A elassical swirl injector noting nomenelature used for design variables

g =0+@, u =u+u, v,=v+v, w,=w+w, 3)

Superposition of a potential vortex can be achieved by starting with the complex potential:
ir

F(z) = ———log(2) (4)
2z

where z is complex variable, I' is vortex strength, and F is the complex potential. The resulting
velocity components for this flow are as follows,

L (5)
2nr

This vortex is irrotational as known since @ = Vxi =0, except at 7 =0. Using Eq.(5), the total
velocity in Eq.(3) can be computed,

u,=0, v, =0, w =

1
o2 1 ) 2 =+ vi+wi—w -w
5|“:|2_“,'“v=5[(u+llv)"+(v+vv)“+(w+wv)”] 2[” SRR L e

: | (0)
“Wu+u)u, +(v+v,) v, +(wtw,) w] = 5[112 +v2]—;wv2

lu}v2=l ._r_ =l 27Ta0U =l aOU (7)
2 2\ 2xzr 2\ 2n#r 2\ F

Choosing the ideal injection velocity (U), the orifice radius (a), and liquid density (p) as
dimensions, the dimensionless result can be written as,

D
_¢=l|g|2_p e LZ (8)
by 2 & We We 2\a ) r

where




where the Weber and Bond numbers are defined as above. In addition, the [1” +v’] of base flow is
simplified as |z‘l|2. Since we have nondimensionalized against the tangential velocity, U, the Rossby

number does not appear explicitly in Eq.(8), but the last term on the RHS of the equation corresponds
to the circumferential pressure developed by the potential vortex. In this context, the radial location
of the center of the tangential channel, a,, defines the dimensionless strength of the vortical flow. The
kinematic equation for motion of points on the free surface can be expressed:

Dz 0¢ o¢

. Dr .
=— - —=—-s1n f+qgcos 9
T Ty eas  Shass SRHGe 2

where B is the local slope of the wave with respect to the horizontal direction. Equations (8) and
(9) are integrated in time using a 4™-order Runge-Kutta scheme to provide the evolution of the
velocity potential and the motion of the free surface.

For long integrations or resolution of highly distorted surfaces, points on the free surface will tend
to bunch in regions of higher curvature as a result of the free-surface motion. For this reason, the
points on the free surface are redistributed at each time step using a cubic spline fitting of the
instantaneous shape. The Laplace equation 1s solved to update velocities and the process is marched
forward in time. Formally, the resolution of the scheme is second-order in space and 4™-order in time,
but surface curvature and capillary forces are resolved with 4™-order accuracy given a set of points
defining the instantaneous shape. More details regarding the numerical procedure can be found in
Yoon and Heister."’

B. Oscillating Pressurc Boundary Conditions and Domain Discrctization

The computational model was upgraded to address the more realistic condition involving an oscillating
chamber pressure. This boundary condition will allow orifice massflows to adjust naturally to the instantancous
pressure within the vortex chamber. In ordcr to implement these physics into BEM codc we need to know how
inflow responscs to changes in chamber pressure. This can be donc using a potential vortex approximation.

12 ' rl
From the radial momentum equation, Kg_ - L?E_ , there for the potential vortex: Vé =—
R p'oR 27R
After integration the dimensional pressure drop across the liquid film can be computed using the following
equation:

¥ e
£ roulmpln iyt alipie peilegiomeloeminndbqueb,
R Rl W
2- ————————————————— 7
]
b ; Re Rn )
Figure 2. Schematic of a classical swirl injector

53




Substituting nondimensional circulation I' = 27Z'Rm Vo =27R. V. we obtain:

mon

e (e SUPTERE S/ (e | A 10)
: 2 R 2R (

Assuming a constant stagnation pressure in the manifold and neglecting viscosity losscs, Bernoulli’s

2,
=it

equation gives us pressure drop across the inlet channel: AP, = 2

So the total pressure drop across injector is the sum of pressure drops aeross the liquid film and inlet
channel:

VR
AP = AR + AP, =—"—% (1
2 R
Knowing this pressure drop inflow velocity can be computed as:
R
V., =2AP R—C (12)

n

Where pressure drop is assumed to be a sinusoidal funetion of time AP = AP, . + £sin{wt), where

teady

steady state pressure drop is ealeulated from the initial conditions:

2] 2
= qmmn Rin

APSIchy - 2R 2

C _ steady

Figurc 3 shows a typical computational grid cmployed in the studies. Initial pressure drop is ecomputed from
Eq. (12) based on steady state solution for the core radius using constant inflow rate. This pressure drop plus
perturbation is further converted to massflow on the inlet boundary using Eq. (13). This approach is used for
both channels so each of them sees different pressure drop depending on the local core radius. Nodes on solid
walls are subjeet to the flow tangeney condition (q=0), and nodes of the free surface are subjeet to the Bernoulli
condition derived in Eq.(8). The node Iying at the free surface junction with the head-end of the vortex chamber
is treated as a moving nodc such that the free surface remains perpendicular to the wall at this location. The grid
spacing along thc head-end of the vortex chamber is streteched to aceommodate movement of the corner node.

(13)

C. Solution at interior nodes

Outflow rates in the nozzle can be computed using velocities at two boundary points and assumption of
linear velocity profile. However this approach is not accurate and results in up to a 3% error based on numerical
experiments. In order to improve the aceuracy we need to know velocity profile what requires to usc an
additional approach in order to get interior velocities. As in the solution for conditions at nodes on the boundary,
the solution at interior nodes is made up of the following parts: the development of intcgral equation for the
Green's funetion, the integration and the calculation of the solution for unknown values of velocity potential and
1t’s derivatives.

To eompute @ on the interior points equation (1) can be rearranged to give

_.i_ a_G_ G (14)
o 47rr(p6n &

After discretization it becomes:
270, =D, 0, =S, 4, (15)
Where i denotes interior nodes and j denotes nodcs on the boundary. For any individual interior node D and
S become row vectors known from the solution on the boundary, so ¢ can be found from this equation.
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In order to find veloeities we need to

o Op 0 .
compute derivatives — and —— which
4 or
can be evaluated by analytical 30
differentiation of equation (14) with '":f' '"ff'
respeet to z and r. New integrals, resulting i
from the differentiation of the Green’s L
function in the z, r directions, result from i
this process. Ref. 19 and Ref. 20 provide a §
detailed discussion of the methodology ANt \
employed to discretize these integrals. b
After upgrading the code with this . 5
methodology, the axial veloeity profile at ' Vortox chamber Nozzle
the nozzle exit planec ecan be defined and R
integrated to providg the overall massflow Torh ‘Wt saiEe N .
produced by the device at a given instance S 3
in time. Evaluation of this approach, using ~
simple trapezoidal quadrature to integrate o6
the velocity profile, shows that computed 0.0 05 10 15 2.0 25 30 35
time averaged inflow and outflow differ by z/a
less than 0.1% using approximately the
same grid spacing for both exterior and . . . .
interior nodes. Since we need to place Figure 3. A grid system having two inlet channcls
interior nodes only along a radial line in the
nozzle where liquid film is very thin, the
number of additional nodes was about 10-15 in comparison to more than 300 surface nodes. Along with the fact

that matrix inversion is not required on the interior, effect on computational time was negligible but accuracy
increased more than on order in magnitude.

Channels

r/a

II1. Analytical Model

A. Single channel

The lincar model of the pressure swirl atomizer consists of 3 components namely, tangential channels,
vortex chamber and nozzle. This analytical model was used to analyze the injector shown in Figure 1 and was
developed by Bazarov®.

The tangential channels are be modeled as a pressure atomizer whose length is much less than the
wavelength of oscillation.

I ioL,
1 vV _11-iSh,

T~ - a2l 2 16
AP 2 oL, 2 1+ Sk ()

I+ ="~

V
I . g q (zh{.‘ /
Where I, is defined as response of tangential channel and Sk, = ’/V as Strouhal number of

tangential channel.
There are two phenomena being considered in the vortex chamber. Firstly the oscillations in liquid flow rute

: : . : :
in tangential channels M7, produces ‘Surface Waves’ in the vortex chamber which propagates back and forth as
itreflects from the entrance of the nozzle. Secondly we have what are called ‘Vorticity Waves’ which refers to

the fluid regions swirling with different velocities due to ¥ 7 in the vortex chamber. The vorticity waves
strongly depends on radial velocity in the vortex chamber. The pressure drop in the vortex chamber APW is the

vector sum of the pressure drop due to surface waves ﬁPV_sw and vorticity waves AP\,-W
The nozzle is assumed to be short and any losses (no pressure or viscous losses) in it are neglected. The
thickness of liquid through it is considered to be constant, so any effect due to ‘vorticity waves’ is negligible.




Therc is only phase shift in the surface waves when it travcls through the nozzle of length L,, given
wl )
byty, =—"-. Therctore the response of the nozzle would bc
h,

M, =—=(1-M)e™ (17

n

whn

vn

Where 11, & M., are mass flow rate fluctuations in the nozzle and near the nozzle entrance respectively.
IT is the reflection coefficient i.e. the percentage of wave which reflects back from the contraction leading up
to the nozzle. Combining the individual responses of the components gives the responsc of the swirl injcctor
(Eq.18). A more thorough description can be found in Bazarov®',

;;In/‘ //'
H _ / ‘ "‘l" - &2 H]'H\'n—.\'wnn (l 8)
total T }/ a ] + ZHT (H + Hv-mr)

Here a is a geometric parameter and AP is the pressure drop across the swirl injector.

k=sw

The total responsc IT , , is complex; hence both amplitude and phase can be deduced from it.

B. Modified model for dual channel injector
Consider a swirl injector with two rows of tangential injectors separated from each other by a distance L

(Figure 4). We assume that the response of the tangential channcls and nozzle are unchanged (with respect to
singlc row of inlets) with the introduction of another row of inlet. Also the any modification nccded duc to the
‘vorticity” effect in the vortex chambcr is neglectcd as it is found to be negligible. However the intcraction of
the surface waves in the vortex chamber has to be accounted for. Sec Richardson®® for a detailed analysis of a
two channel swirl injector.

The phase shift associated with the distance between the two inlet channels L, is given by,

oL,
¢.V - V'

wv

(19)

Figure 4. A classical swirl injector with two inlets at locations *a’ & ‘b’ separated by a distance L,

Where angular velocity, @ = 27 f and V»;V is the wavc velocity in the vortex chamber.

We can use the principle of superposition to examine the influence of reflected waves in the vortcx chamber
of any arbitrary length. Let us consider an initial wave in the vortex chamber at inlet ‘a’ given by

&, =N, e (20)
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Where A is the initial height of the wave duc to the perturbation in the inlet ‘a’. Ncar the nozzle this wave
travels a distance of LV (length of Vortex Chamber) and becomes,
_ Hwi=4,)-v4,
S =N (21
Where @, the shift angle is associated with traveling LV distance and 'U¢V' is the reduction in the amplitude
duc to viscosity'ul. A part of this wave gets reflected which is given by,
_ H{or1=4,)-v4,
(5" )vnl == HA”e (22)
Where T1 is the reflection cocfficient. This reflected wave changes in the following manner when it travels

a length EV to reach the closed end of the Vortex Chamber

£y, =TIA 20724 23)
This wave is reflected completely from the closed end and reaches the nozzlc,
£,, =TIA g% @4)
The rcflected wave will be,
2 i{wt-3¢,)-uv3
(£),, =A@ 25)

And so the waves reflect back and forth until their amplitudes become negligibly small.
Using the principle of superposition we have the following wave near the closcd end of the vortex chamber,

£, =i ST T/ ee - (26)
n=0
Near the nozzle,
f‘,,, _ AuZHne:(mt—(2n+l)¢v)—(2n+l)u¢v 7
n=0

Similarly we can derive equations for surface waves in the vortex chamber due to the perturbations in the
inlet channel *b’.

Then, using the principle of superimposition we can compute the wave ncar the head cnd of vortex chamber
as follows

fvh - A”inne:(mt—Zn@)—Znu@ +I\biI-Inel(wl—anzﬁv+;z§,‘)—2nugzﬁv+ugz§,r (28)
n=0 n=0
Similarly ncar the nozzle inlet we have
fm _ A” ) l_I"e,(ml-'(ZnH)¢‘,)—2nu¢v +AbiI_I"e'({"'_(zml)¢"+¢‘)_(2"+”U¢‘+"¢" (2())
n=0 n=0

The above two cquations arc used in computing the response of the dual channel injector in conjunction with
Eq.(18).
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1V. Results

A. Single channel

A single channel swirl injeetor was analyzed using the linear model and compared with computational
rcsults generated by BEM code deseribed in section 1 using oscillation pressurc boundary conditions. A general
but realistie injeetor was chosen whose design parameters are given in Table I. A time step of 0.0003 along with

3 ~ : 20
Ly 150 o
25 BeM BEM
E 100
2 g 50
g <
é_ 1:5 E 0}
< ""3 50
| g
£ 100
05 -150
0 » : 200
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Frequency in Hz Frequency in Hz
Figure 5. Amplitude vs Frequency Figure 6. Phase angle vs Frequency

a nodal spacing of 0.032 was used. Each computation was allowed to run for 15 see which took approximately 4
days of CPU time. The nodal spacing and time step are optimized for redueing run time without affecting the
output. See Richardson™ for details.

Cha::]]eelt radius  of tangential R;" =0.1270 in
Radius of nozzle R =0.085 in
Radius of vortex chamber R'v =0.1667 in
Radius of tangential channel R'T =0.0253 in
Length of tangential channel Lr =0.0597 in
Length of nozzle En =0.059 in
Length of vortex chamber L“, =0.179 in
No of inlet channels n=4
Inlct veloeity Vr =690 iR

Tablel 1. Design parameters of single channel swirl injector

The amplitude predicted by linear theory is in close agreement with computational rcsults for frequency
range <5 kHz (Figure 5.) However at higher frequencics the computations prcdict a much morc stable injcctor.
Possiblc causes could be the time taken to turn the flow from the tangcential channel to vortex chamber (907 turn)
and associated phase shift for this. From Figure 6 we see that the change in phase betwcen theorctieal and BEM
codc results are higher after ~5 kHz. Another probable cause could be non-linear effects playing more
significant role in the stability of the injector at highcr frcquencics of opceration.

B. Dual Channel results

A dual channel swirl injector was analyzed using the modificd lincar model and compared with
computational results gencrated by BEM code described in scction 11 using oscillation pressurc boundary
conditions. An injector currently being tested by Millcr* at Purduc University was uscd as basis for this study
(Table 2).
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Inlet radius of tangential
channel

Radius of nozzle

Radius of vortex echamber
Radius of tangential ehannel
Length of tangential ehannel
Length of nozzle

Length of vortex chamber

Length between two ehannels

No of inlet channels

Inlet veloeity

R =0.454 in

R =0.454 in

R, =0.454 in
R.=0.0175 in
L, =0.359 in

Ln =0.0 in
L,=0.4767 in

L =0.0999in
n=_8

V, =913 in/s

Table 2. Design parameters of a dual channel swirl injeetor
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Figure 7. Amplitude vs Frequency for dual channel swirl injector

Sinee the injeetor to be analyzed is an ‘open’ injector that is the radius of vortex ehamber and nozzle being

10000

equal further modifieation where required to the existing model. The effeet due to refleetion eoeffieient IT was

eliminated (set to a very small value) and the nozzle length was set to an insignifieant value. The flow was

shared equally among both the inlet ehannels.



The linear model shows a local minima around 1344 Hz (Figurc 7,8). This frequency corresponds to the
distancc between the two inlets le =(0.1in. Thc amplitude of rcsponsc is never greater than unity; thisis a

fcature of the ‘open’ injector which makes it morc attractivc option ovcr the ‘classical’ swirl injector. The dual
channel injcctor is much more stable than the single inlct design due to the destructive interference of the
surface waves in thc vortex chamber. The computational results seem bounded by the single and dual channcl
analytical analysis for the samc dcsign parameters.
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Figure 8. Phase shift vs frequency for dual channel injector

At low frequencies (< 1000 Hz) the intcrference of surface waves is morc prominent owing to longer
wavelengths and fewer waves in the vortex chamber. However at higher frequencies the computational model
shows a diminishing effect of thc two channel inlet probably duc to dcercasing wavelengths of the surface
waves and probably the simple dual channel analysis seems inadequate to capture all the phenomena in the
vortex chamber. Also the non-linear cffects are not being accounted for in the theoretical model.
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The amount of mass flow rate (Fig. 9) was varied among the two sets of inlets. A 50-50 split shows to the
most stable combination with clear local minima at 1344 Hz. Other combinations are a little less stable than the
50-50 split and also don’t show any clear local minima.
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Figure 10. Amplitude vs perturbation

Fig. 10 shows BEM results for amplitude amplification factor (ratio of outflow to inflow perturbation
magnitudes) as a function of chamber pressure perturbations for the frequeney of 2000 Hz. As we can see even
80% perturbation causes nonlinearity of just above 5%.

Conclusion

The dynamics of swirl injectors utilizing multiple rows of inlet channels have been addressed using lincar
theory and nonlinear axisymmetric boundary element method calculations. The use of multiple inlet channels is
belicved to provide a mechanism to cancel waves and hence injector unsteadiness at specific frequencies.
Computations have been conducted for a candidate design over the relevant frequency range to assess the
overall phase and amplitude responsc of these injectors. For designs making use of a single row on inlet
channels, the linear theory and the nonlinear BEM results agree quite well at low frequencices, with substantial
departure in both amplitude and phasc at higher frequencies. This departure is theorized to be due to flow
turning within the vortex chamber that is not presently considered in the lincar model. The two-channel results
show much greater disparity as the complex wave interactions are not all considered in the modified linear
model. In addition, the disparity in results may also be attributed to flow turning effects that alter the phasing of
the waves emanating from the two injection regions. Additional study is required to further illuminate this issue.
Finally, a series of BEM computations were conduted to assess the effect of perturbation amplitude on the
response of the device, i.e. nonlinear effects. The results show that high amplitude foreing is required to cause a
substantial departure from the linear result.
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Appendix C — Paper on Linear Stability of Compound Jets

On the Linear Stability of Compound Capillary Jets

Maksud (Max) Ismailov* and Stephen D. Heister'

School of Aeronautics and Astronautics, Purdue University, W. Lafayette, IN

Abstract

Compound eapillary jets are utilized in the manufaeturing of eoated tablets in the pharmaceutieal industry, or to
produee well managed ink drops in the printing industry. Differences in densities, surface tensions, and radii
between the inner and outer liquids ecause eomplex instability behavior of the eompound jet, and present an
interesting atomization problem. The present study contributes to previous works on inviseid eompound jets by
establishing an alternative, simplified approach to the dispersion relation, where the surface disturbanees of two
liquids are assumed to be in phase and proportional to each other, and the flow is treated as irrotational. The
drop sizes are evaluated, treating the compound jet at the breakup as a single jet with radius equal to the radius
of the outer liquid, where the breakup is assumed to happen when the most unstable flow disturbanee is
developed. The density, surface tension, and radius ratios are varied parametrically to assess their influenee on
the stability and drop sizes formed. Overall, this methodology provides means for quiek preliminary analysis of
compound jets.
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Introduction

FoA Ambient gas p,,p,.9,

Inner Liquid p,, p,,9,

N Y

=L/
Figure 1. Compound jet schematic

A compound jet schematically shown on Figure 1 is comprised of two liquid jets, wherc the inner
jet indicated by subscript 1 is surrounded by a thin annular outer jet denoted by subscript 2. Each jet has its
own density 0 , pressure distribution p , viscosity (not shown), etc. This jet configuration can be achieved,

if a high speed liquid is injected through a nozzle into another still or slowly moving liquid. Hertz and
Hermanrud (9] (Figures 4 and Sb) observed that due to shear stresses, the inner liquid decelerates and the
outer accelerates, and the latter forms a thin annular layer around the inner one. Generally, the compound
jetis injected into the ambient quiescent medium having much lower density than both liquids. Two
interfaces are developed, the first one being between the inner and the outer liquids, and the second one

being between the outer liquid and the ambient gas, with surface tensions &, and &, respectively. Due to
natural or artificial flow disturbances, the liquids of the compound jet experience fluctuations 77, and 77,

around the mean injection radii ¢, and q, .

This type of jets is used in printing and pharmaceutical industries. Hertz and Hermanrud [9] and
the research group [2] experimentally showed that under certain set of property ratios of two liquids, such
as ratios of densities, radii, or interfacial surface tensions, the compound jet can break up into fairly
consistent structures, where the clusters of roughly monodisperse inner liquid drops are wrapped by
fragments of the outer liquid. In printing, a train of ink drops contained in a long thread of outer liquid
(Figure 2 of [2]) is obtained, and electrical field is applied to deflect the drops to the required points on the
paper [10]. Similarly, in pharmacy, tablet capsules with an equal number of medicine drops inside them are
manufactured (Figure 9 of [2]). The monodispersity of inner drops provides means for the better control of
ink drop trajectories or for more precise mass calculation of the active ingredient in the tablet.

Since the liquids have distinct densities, velocities, and surface tensions on both interfaces, the
flow disturbances cause the occurrence of capillary jet instability. This problem is similar to the Kelvin-
Helmbholtz instability [8] but retains its distinct features. Kelvin-Helmholtz instability considers two plain
parallel streams moving with two different velocities, infinitely wide in the direction perpendicular to the
flow, and sharing one single interface between them. In contrast, the liquids of the compound jet move with
equal velocities and have finite dimensions, circular geometry, and one additional interface exists betwecn
the outer liquid and the surrounding gas.

There are many publications concerned with the temporal capillary instability of compound jets.
Among them, the linear analyses of Sanz and Meseguer [15] and Chaunan and Maldarelli [5] treating the
compound jet as inviscid are relevant to this study and are paid closer attention.

Sanz and Meseguer [15] assume that the flow is axisymmetric and purely one-dimensional, where
the velocities and pressures depend on the axial coordinate only. Their mass conservation equation is based
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on the notion that, if a fluid element is followed as it flows in the lagrangian frame of reference, the
Reynolds’s transport theorem [7] can be applied to its cross-sectional area chosen as the property that is

orl 8
conserved, which results in a—l +—a---(ll].rj2 ) = (), named as Cosserat jet equations in [3]. (To make the
t 74

comparison of our study to their publication clearer, the original equations used by them will be written in
our notation.) Since the flow is considered to be simply axial, their momentum equation is given

by —=+u . —— = ————— . Furthermore, they consider that the deviations of liquids from their

J
t Oz p; 0z
corresponding mean levels f| andf2 are independent from each other, and the surface radii at each axial

location can be calculated as 7, =@, + & f, andr, = a, + € f,, where € is a small number. By setting the
problem in this way, Sanz and Meseguer [15] arrive at a fourth order algebraic equation for the growth
rate @ that generates four roots for each value of the wave-number & . Also, they obtain an equation
relating f, and f, to each other and given by amplification factor

\2
£__1 1-(a,/a,)

1+ 5
5 Gjds 20

A= (kd -k? ) implying that the disturbances on each interface can be

either in phase, when 4 > 1, which is termed as stretching mode of flow disturbances, or out of phase,
when A <1, termed as squeezing mode. These two modes are shown on Figure 2 of [6]. However, Sanz
and Meseguer [15] demonstrate that the majority of compound jet disturbances propagate in phase

with A > 1. Next, giving the temporal development of the radii of both interfaces by r, = @, — & f,”"
andv, = a, — sze'"' they investigate the cases when one of them vanishes, while the other retains a finite

value, or the case when #; = ¥, # 0 which happens once the free surface touches the interface. All three

cases are qualitatively shown on Figure 7a-c of [13]. The instance when either of the jets reaches the axis of
symmetry is defined as the breakup. From comparing the times of breakup of both jets Sanz and Meseguer
[15] draw conclusions about which one of them breaks first.

Chaunan and Maldarelli [5] are using momentum and continuity equations that are represented in

V. -
the nondimensional form as f§, ——=—-VP andV-v, =0, where f; are the nondimensional density
Dt

ratios. This system of equations is then converted into Fourier-Laplace domain to solve for the velocities

and surface deformations, by using the Fourier-Laplace transforms f° (k) = If(z)e_ﬂcdz

and ]‘(s) = If(t)e *'dt . Then, the pressure is found to be given by P= Al, (kr) P Byl (kl‘) , which
0

causes the Bessel’s functions to emerge in the solution. Next, the solution is inverted back into the tinie and

space domain going through the procedure of converting the Fourier-Laplace line integrals into Bromwich

contour integrals. Finally, their dispersion equation is given by det(a) = 0, where @ is a size 4 matrix

with elements containing wave-number & , growth rate 5, and Bessel’s functions. Also, the surface
distortions are given as functions of @ and initial conditions, which are not proportional to each other.
Similarly to the work by Sanz and Meseguer [15], their dispersion equation generates two pairs of
symmetric § roots for each k value, two of which are negative, and the other two positive. The positivc
roots lead to the occurrence of stretching and squeezing modes shown on Figure 5 of their paper [5].
Chaunan and Maldarelli [5] show that the stretching mode is possible for wavelengths greater than the
inner jet circumference, whereas the squeezing mode exists for wavelengths greater than the outer jet
circumference, while the stretching mode growth rates are larger than the squeezing mode growth rates for
all wavelengths. If we consider that the disturbances with larger growth rates prevail, then this is in




agreement with the conclusion of Sanz and Meseguer [15] declaring that most of the compound jets have a
stretching mode of motion. Subsequently, they conclude that if the compound jet breaks up similarly to a

single jet when the disturbances correspond to kmax and s . the stretching mode will make the inner jet

break first, thus generating drops of inner liquid inside the outer, followed by the breakup of the outer jet.
This reasoning implies that this mode is responsible for the creation of clusters of inner liquid drops in the
outer liquid segments as seen in practice and described above.

In contrast to these works, in this study, which is linear as well, we use the potential flow

09,

equations V2¢i =0 anda—
t

dp. 1
+ I& + EV¢" V¢, =G = F(t) which allow for radial movement of
p

liquids [7]. Also, the surface deformations 7, and 77, are calculated to be directly proportional to each

other, as will be shown below. This means that the disturbances are assumed to be strictly in phase and
moving in stretching mode. This is in good agreement with the fact that the compound jets tend to this type
of mode, as explained above. Application of the normal mode analysis to these equations yields the
solution also involving Bessel’s functions as in [5] but does not require the mechanism of forward and
backward Fourier-Laplace transforms. The dispersion relation obtained is a second order algebraic equation,
producing only two growth rates for each respective disturbance wavelength, where the positive and real
one is selected for instability analysis. The jet breakup is considered as a situation when the disturbance
with maximum growth rate is applied, following Rayleigh’s approach. In this study we are interested in the
breakup of the outer liquid only, which characterizes the breakup of the compound jet as a whole. Since the
stretching mode is assumed, the outer liquid drops will contain some amount of inner liquid drops. The
outer liquid drop sizes are evaluated by assuming that the drop volume is equal to the volume of cylindrical
segment having length equal to the wavelength of the most unstable disturbance. Taken all together, this
methodology allows making fast preliminary analysis of the compound jet stability behavior. On the other
hand, due to the lack of two additional roots, this algorithm lacks the ability to explicitly predict the type of
mode of disturbances (stretching or squeezing), or which of the jets will break up first. Next, because of
neglected viscosity, the influence of viscosity ratios on stability is not assessed. Lastly, owing to the linear
character of this study, the formation of satellite droplets can not be assessed.

Numerous publications on compound jets, such as [13], [16], [6], and [1], take the viscosity of
liquids into account and provide detailed investigation of how the variation of density, surface tension, and
radius ratios affects the jet instability. To illustrate the diversity of the methods employed to compute the
compound jets, some of the flow equations of these authors and the approaches they used to solve them are
shown here. Radev and Tchavdarov [13] use the linearized fluid motion equations in the form
ou ou 1 . H; s .

—+U—L= ——Vp, +-LV u; andV-u,; =0, where U is the bulk jet speed and £¢; the
ot oz p; p;
viscosity. Then, applying the boundary conditions they end up with an eigenvalue problem for the Orr-

.y g 2 o .
Sommerfeld equation i Re, (1 - C)(L =g’ )¢j = —j—-—l-(L -a’ ) ¢./ which is solved numerically to
7
get the dispersion relation. Shkadov and Sisoev [16] employ Navier-Stokes equations, including gravity, as
governing equations for the compound jet flow. They rewrite the linearized governing equations and

boundary conditions in terms of the new variables W, =u, w, =—iv, w; =np,and w, =nu' . To get

the dispersion relation, the resulting problem is solved numerically by assuming that these variables can be

a0
represented by a series of the form w,((l()") = Z w,((l()")(m)l]'" ,wherek =1,...,4andn = 1,2 . Chaunan and
m=0

Maldarelli [6] in their paper for viscous compound jets also use Navier-Stokes equations for the flow
description, where the velocities are expressed through the stream function as

1oV, 1Y, , , . .
=— and W, = ———— The governing equations and boundary conditions are converted again
¥ {3 r Or
into Fourier-Laplace domain to obtain the equation

U.

t
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for'V (r) = Arl, (kr)+ BrK, (kr)+Drl, (Br)+ ErK,(Br), where k is the wave number and

ﬂi is the term depending on viscosity. The dispersion relation is then represented by an 8 by 8 matrix

equation. Afterwards, it is transformed back into time and space domain. Bian and Mashayek [1] developed
a one-dimensional nonlinear numerical model for the viscous compound jet simulations, where they are
able to accurately track the liquid surface evolution of both jets. The flow equations are solved by utilizing
the spectral method. In addition to previous authors, they provide the sizes of main and satellite drops
occurring at different property ratios of the two liquids.

Assumptions

In experiment by Hertz and Hermanrud [9], both jets were injected at constant flow rates. Some
distance far from the nozzle, the flow became laminar and one-dimensional with a negligible nixing at the
interface between two liquids, and the liquids acquired approximately same velocity equal to the bulk

velocity of the compound jet denoted here as U . This flow behavior continued until the moment when
disturbances grew to large magnitudes. Hence, to model the jet, we can consider infinitely long, immiscible

liquid columns of radii @, and @, , laminar, axial, steady base flow, and choose a frame of reference

moving with speed U thatis represented by the cylindrical coordinate system having radial and axial
coordinates 7 and Z respectively. This allows us to operate with merely perturbed flow velocities and
pressures instead of dealing with the total ones in our calculations. Following the reasoning on instability of
Drazin and Reid [8] for the Reynolds’s experiment on the pipe flow, we can assume that in the experiment
by Hertz and Hermanrud [9], the disturbances to both liquids were essentially caused by imperfections of
the nozzle wall or by small flow rate fluctuations, which permits us to assume that the magnitudes of
velocity or liquid surface disturbances are small. Historically, beginning with Rayleigh [14], they were
treated as sinusoidal, which is also the case for this study. For the case of a single jet, Rayleigh [14]
concluded that the most unstable disturbances are axisymmetric. Thinking of each interface of the
compound jet as a free surface of a single jet of corresponding size, we will similarly consider that the
disturbances and the resulting flow are axisymmetric and the flow parameters may depend on¥, Z and
time / . Chandrasekhar [4] (Figure 129) showed that for single jets, compared to the inviscid flow case, the
presence of viscocity decreases the growth rates and most unstable wave numbers of disturbances, but the
qualitative dependence of them from each other does not change. Taking this into account, we limit the
scope of this study to an inviscid case. Lighthill [12] shows that in the system with only small disturbances
to the flow field, the vorticity does not change with time. Then, since we initially postulate inviscid flow,

we can assume that the flow remains irrotational for all time and introduce the velocity potentials @,
and ¢2 [7]. In the experiments by Hertz and Hermanrud [9] the flow remained laminar in the range of

compound jet speeds U from 5 to 40 mv/s, which are high enough to neglect forces associated with gravity,
though not sufficient to cause large aerodynamic drag. For the sake of simplicity, the ambient medium is

treated as quiescent vacuum gas with zero density 0, . Hence, we can neglect any other body forces,

except equilibrium forces due to inertia and pressure gradients. Since the flow disturbances are small, the
capillary speeds of disturbances are lower than the compound jet velocity. As Keller, Rubinow, and Tu [11]
have shown, this fact along with the choice of the frame reference described above allows us to limit the
instability analysis in this study to the temporal case. Observing that /' were much smaller than speed of
sound and supposing that the liquids of the compound jet retained constant densities in the basc flow, we
can consider incompressible flow overall. Rayleigh [14] has shown that the disturbance with maximum
growth rate dominates over others. Thus, we can assume that the jet breaks up into liquid segments only
when such most unstable disturbance has developed and the jet oscillates with the frequency equal to the
frequency of this disturbance.

Governing equations
Consider an axial location where small, in phase surface disturbances are mtroduced, Figure 1.

This causes the inner interface to be raised to the new level 7}, above @, and the outer free surface to be
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raised to the new level 77, above @, . Then, the cross-sectional area of the inner jet is changed
bydA =n ((aI +1, )2 = af ) which is approximately equal to
dA =2nrapn, (1.1)
o 2 2 2 2 3
The area change of the outer jet isd4, =7 ((a2 + 772) —d, )— V4 ((aI +1), ) —-q, ) . It is counted

from7), since the inner interface is already deflected, and can be approximated by

dd, =2z (a,n, —am,) (1.2)
Since the surface deformations are assumed to be small, then we can assume that
dA, = dA, (13)

After combining equations(1.1), (1.2) and (1.3), we get a relation between surface elevations of the upper
and inner liquid

a
n,=2-=Ln, (1.4)
a,
This shows that the surface elevations 7}, and 77, are proportional to each other, which allows to assume

stretching mode of the disturbance propagation.
Consider the fluid motion along the inner interface and the outer free surface where the points have

radial coordinates # = @; +1J;, wherei = 1,2 are the indices denoting each interface. Conservation of mass

equations for the perturbed incompressible, axisymmetric flow in the cylindrical coordinate system moving

ou; 190 .
with bulk compound jet speed are given by +——(rv/ ) =0, where j = 1,2 are the indices
0z ror
denoting each liquid. Assuming irrotational flow and introducing the disturbance velocity potentials for two
\ o9, o9,
liquids by 2, = andV, = — [7], we can rewrite these equations as
' Z ‘ 3

o'¢, 10¢, 3¢,
Lr——L+—L=
oz~ r or or

0 (1.5)

0 dp 1
We can use the unsteady Bernoulli equation 6_¢ + J'_P+ EV¢W¢ — G = F(t) to describe the
4 P

wrrotational motion of a fluid particle along the streamlines [7], in this case the inner interface and the outer
free surface. If we neglect the body forces G and absorb the time constant F'(¢) into@, this equation
provides the dynamic boundary conditions for both interfaces

o¢. dp. 1

—L+ [HL+-Vg Vg, =0 (1.6)
ot p; 2

where the pressure integrals represent the change between current and initial pressures Idﬁj =p;,— P, .

When the flow is undisturbed, the surface curvatures are equal to the initial jet radii. Thus, the initial and

current interfacial pressure jumps can be written as follows:

g,

Inner interface A= = — P — P, =0K, (1.7)
q,
O-'v

Free surface Pz_f; = a‘ b~ Pp, =0,K, (1.8)
2,

The corresponding axisymmetric surface curvatures [17] can be found as
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0’ (a,+1n,)

] 2
K = —- 0z — (1.9)
(a,+1,) 1+(a(a‘+n‘)J 1+(a(a‘+n‘)j
0z Oz

The condition that a fluid particle at the interface will remain on interface for all ime serves as kinematic
boundary condition [7]. In axisymmetric case, for two liquids we have

a¢i - 8771 4 a¢j a']l
or ot 0z 0Oz

The system of equations(1.5)-(1.10) poses a nonlinear problem that is hard to solve. However,

(1.10)

7i
are small as

I~

well. Assuming that the disturbance frequencies are not high, we can suppose that the velocity disturbances

¢, 09,
=—2 and v, = % are small as well. Hence, this problem can be solved by linearization around
< o

since the surface disturbances 77; are small, the amplitude of motion and surface slopes

u;

points with radial coordinates 7 = ;. In this case, the derivatives in equations(1.5)-(1.10) can be expanded

in Taylor series around points ¥ = «;, and only the first order terms can be retained since all other terms are

products of higher order derivatives with small quantities 77, ,

0 0 i 0

8‘2 (z,a,+,;,,f)=£(z,a,,z)+n, aﬁ‘”; (e = (Z(z,a,.t)

aZ 82 . 83 2

l(z,a‘ +7,.1) = ¢§ (z.a.t)+7, ¢; (z.a,.t)+..= ¢§ ()
op op op

op’
where [3 canbe 7 or z [7]. Then, the linearized continuity equations at # = @, are given by
2 2
¢, 108, 09, _
oz r or or

v D

0 (1.

2
_ 09,
Neglecting V@ [V ¢ in (1.6) as a sum of squares of small quantities of the form (Ei , the dynamic

boundary conditions can be rewritten as

09,
pj—atL=Pj—pj

At the inner interface and the outer free surface the subtraction of these equations gives

o

Atr=a +n, 2, p,—===(F-P)-(p,-p,) (1.12)
ot ot
. a¢7 a¢g
At’—(12+772 ng_pk’?:([;_[)g)_(pz_l%v) (1.13)
on Y
In the expression for curvatures (1.9) we can assume that 1 [] (a—]‘j , and keeping terms up to first order
4
. - : ! I 7 o
terms in the binomial expansion ———— = — — —+ ..., we can simplify them to

(a,+n,) a a

[ !
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1 o’
i = __l;___@
a a 0z°

] i

(1.14)

Next, plugging (1.7), (1.8) into (1.12), (1.13) respectively, using (1.14), and assuming quiescent vacuum
gas for the ambient with ¢g = B = (0, we arrive at the linearized dynamic boundary conditions for the

inner interface and the outer free surface written respectively as follows:

0 0 0’1
Atr=aq, plﬂ—pzﬁwf1 77—'2+ ZI (1.15)
ot ot a Oz
0 o’
Atr=a, ,02—¢2 =0, 77_§+_7722 (1.16)
ot a, 0z
Neglecting = O terms in (1.10) as products of small quantities gives the linearized Kinematic
'z
boundary conditions
0 0 o1
T, Gg. 0. 07 (1.17)
or or ot

These conditions also reflect the fact that the vertical velocity components of two liquids meeting at the
boundary should be equal.
This study assumes flow disturbances have sinusoidal shape and grow only temporally [11].

Because of that, they can be represented as Fourier waves @, = £ (r) exp(a)t - ikz) in order to solve the
system of equations(1.11), (1.15)-(1.17). Plugging them into continuity equation (1.11) results in Bessel's
equation for the unknown function of the radius £, (r)
OF (r oF (r
LOE@) . ()

or? or

For each liquid this equation gives a solution in terms of Bessel’s functions
E (r) = Cl(j)lo (kr) + Cg”Ko (kr) , where Cl(j) and C:E_j) are unknown constants to be defined for

b}

—kzrsz (r) =0

each liquid. Disturbances should vanish at the jet axis, therefore Cgl) must be zero since lim Ky(kr)=o.
r—0

After that, the velocity potentials can be rewritten as

For 0 <r <a, g =CcV (kr)exp(ot + ikz) (1.18)

For a, <r <a, ¢, =(CO1, (kr)+ CPK, (k) Jexp( ot + ikz) (1.19)

Similarly, due to sinusoidal shape and relation(1.4), the surface deformations are given by

Ari=a, 1, =1, exp(wt + ikz) (1.20)
a 3

At r=a, 1, = 2—L1, exp( ot + ikz) (1.21)
a

2

Substituting the velocity potential ¢, (1.18) and surface deformation 77, (1.20) into the first kinematic
boundary condition at ¥ = a, (1.17) we get
v L 0 1
Yk 1 (ka)

Plugging the velocity potential ¢2 (1.19) and surface deformation 77, (1.20) into the second kinematic

e

boundary condition at r = @, (1.17) results in
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1 4 CPK, (ka,)
e8 = k
1
I, (ka, )

Inserting the velocity potential ¢2 (1.19) and surface deformation 77, (1.21) into the dynamic boundary

(.25

condition at ¥ =, (1.16) and using the recently obtained expression for Cl(z) yields

2% ’7922_( ! —kzj_.”t)“’_ I, (ka,)

o G po\a kI (ka)

C? = (1.24)
I, (ka
K, (kal)M+ K, (ka,)

1, (ka,)

Finally, after inserting both velocity potentials ¢, (1.18),4, (1.19) and surface deformation 77, (1.20) into

[S]

the dynamic boundary condition at 7 = @, (1.15), we obtain the intermediate expression relating all

parameters of the problem

po| C'1, (ka) |- poo| CP1, (ke )+ CK, (kay) | = o, {"g’ +(iky 770]

a,

Dispersion equation and drop size evaluation
Substituting of constants Cl(l), Cl(z) and ng) defined by equations (1.22)-(1.24) into the last

expression and rearranging results in the dispersion equation of the form

—Z—GLO'2 (Lz—kzlg —0',( 1, —sz
- a, a ) a;

E
pZ(A_BBj_pIA

(2.1)

where the functions A, B, D, E are defined as follows:

1y (kay) e 1, (ka,)
_Il(kal) _Il(kal)
I, (ka,) I, (ka,)

D=K, (ka) +K,(ka,) E=K,(ka,) + K, (ka,)

1, (ka,) 1, (ka,)
Dispersion relation given by (2.1) provides two symmetric real roots when both numerator and
denominator are simultaneously positive or negative. The positive root represents the growth rate @ that
makes the disturbance grow in time as it moves with the bulk jet velocity U . In case when numerator and
denominator have opposite signs the roots are complex and conjugate to each other, the disturbances are
sinusoidal and stable, and do not grow in time. Because there are only two roots, this dispersion relation
reflects the stability behavior of the compound jet as if it was one single jet with sizes equal to those of the
outer jet. It can not provide information on the stability of inner and outer jets taken separately from each
other as in [5] and [15].

Let us investigate the situation when the outer hquid 1s removed and the compound jet reduces to a

single jet. The absence of the outer liquid implies that p, = 0, o, =0,a, = a, . This causes the functions

E
A,B,D,E tosimplifytod=8= D =1. Consequently, the dispersion equation becomes
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kL
a c [, (ka
Q)Z:k J = ]3(1—/{261'2)/{(11——]( l)

-p 4 P 1, (kal )
which is Rayleigh’s equation for a single jet of radius @, [14].

The dependence of positive growth rates from wave numbers does have a maximum at which the
most unstable disturbance occurs. As was shown by Sanz and Meseguer [15] and Chaunan and Maldarelli
[5], the assumption of stretching mode of disturbances implies that the inner jet always breaks up first

followed by the breakup of the outer jet, which means that in this study the point (k w )corresponds

max ? max

to the breakup of the outer jet already containing the drops of inner liquid. Following Rayleigh’s approach,
we assume that the drops are formed at the crests of disturbance waves, moving with the period equal to the

R 27
wavelength A_, = ——. Since the liquids of the compound jet are incompressible and disturbance waves

nax
max

develop from the initially undisturbed flow, the volume of the jet between crests is equal to the volume of

undisturbed cylindrical jet segment having radius a, and length A_, . Assuming the liquid between crests

is spent entirely to form a drop, because this model cannot account for the formation of smaller satellite

drops, and that due to the surface tension on the free surface ¢, it will attain a spherical shape, we

4
have rai A = 57zrj which gives

max

1
6 ma; |?
@ (2.2)

Nondimensionalization of equations (2.1) and (2.2) can be made by choosing @, as length scale
-

3\2
a
and [ i ) as time scale. The relation of dimensional wave numbers and growth rates to their
(03
2

: pa
nondimensional values denoted by star is givenby k = — and o = @ | 222 respectively. Let
@y 0,
radius, surface tension, and density ratios be defined as

a o
B = Jad
aQ o, £

Following that, the nondimensional form of the dispersion equation is given by

2w -]

a =

N2 - * o K
(@) =k o (23)
A-B— -
D d
where the functions A, B, D, E are rewritten in the following form:
K/ g
A= ly ( / a) B lo_k_)_

e k,
Il(k,'/a) 11( a)
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D=K, (ké)ll[—z’(‘%f K(k) E=K (ké)é%:—:))* % (4e)

, We can rewrite equation {2.2) as

*

max

a,

Likewise, given that 7, =r,a, andk =

}/
5 6 © \° (2.4)
v, = —— ;
a4k

max

Further in this study, the nondimensional quantitiecs will be written without superscript *.

Parametric study and comparison of results

In this section the influence of radius ¢ , density  , and surface tension S ratios on the jet
stability and on the drop sizes formed is investigated.

Figures 2 and 3 show how the surface tension and radius ratios affect the jet stability and are
compared to analogous Figures 8 and 10 of [5], showing same results plotted for the stretching mode of
disturbances. The nondimensionalization scales used by Chaunan and Maldarelli [5] were «, for length and

31\"2
a
ﬂ—'— for time, while the radius, surface tension, and density ratios were defined in the same way as

@

«,s,d respectively. Let the growth rates and wave numbers nondimensionalized by their scaling factors

be denoted by superscript C . Then, they are related to the same quantities in this study by

V4
2

. Sda )

On =

and k; =k A . Figures 2 and 3 are plotted with a)(*, on the vertical axis and /\( on
Y a
the horizontal without showing superscript *.

Figure 2 shows that, as the surface tension of the outer liquid increases, there is a general trend
towards the lower most unstable wave numbers, or lower frequencies of the disturbances. Also, the rangc of
unstable wavelengths becomes shorter. These tendencies can be explained by the fact that at higher
frequencies the surface gets more deformed, thus causing higher curvatures and the resulting surface

tension to act stronger and damp these high frequency oscillations.
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Figure 2 Effect of surface tension ratio on stability variation with d =1, @ =2 .
(Compare to Figure 8 of [5])

For the growth rate we can observe three types of behavior. The peak of the growth rates first
decreases when s takes values from less than 1 up to 1.6 (some curves are not shown here), then stays

approximately at the level equal to the peak of § =2 curve, and finally increases for values s > 2. This

can be viewed in the following way. Since § is the ratio of surface tensions, then by fixing @, we incrcase
0, as § gets larger. Next, we can represent the disturbances in the form ¢ =@, exp (a)l + ik:.')

andn, =n, exp(wt +ikz), where 5 depend on k and @ through equations (1.22)-(1.24) , and we
7, =11, €XPp i q

assume that ﬁi are fixed. Inserting them into the boundary conditions (1.15) and (1.16) we obtain

. " 1 ,
At r=a, a)(p1¢1 _p2¢2)20'1771 ;{“k— (2.9)
1

~ & [
Atr=a, op,@, = 0,1, =T sz (2.0)
2

Here the term pi¢j implicitly characterizes the momentum of the liquid. In all three cases considered,

k decreases while &, increases. The first and second cases, where @

max decreases and then stays

max

nearly constant, are possible when p,@, grows, and p,@, grows faster than p,@, . The last case, where k

decreases and @, rises, is achievable when p,@, does not change much, and p,@, grows. This means

that, when both liquids have growing momentums, there is a net decrease of the most unstable growth rates,
whereas, in the situation when only the inner liquid gains momentum, there is a net increase of the
maximum growth rates.

Comparing Figure 2 to Figure 8 of [5], we can see that their curves with 5§ = 0.5,2 have one

maximum growth rate, while the ones with § = 5,10 have two maximum growth rates. However, the pcak
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values are similar on both figures. On their figure, when § is increased from 0.5 to 2, the maximum growth
rate decreases slightly without noticable change in the most unstable wave numbers, and, when § is
increased from 5 to 10, the maximum on the right shifts toward lower growth rates and higher wave
numbers, whereas, the maximum on the left shifts towards higher growth rates and lower wave numbers.
Conclusively, except for the maximums on the right of the curves with s = 5,10, their curves have similar
trends.

Next, we consider the effect of the radius ratio variation on the jet stability (Figure 3). We can
observe that at values of & from 10 to approximately 4.5 (the curves with values of & different from
shown on Figure 3 are not illustrated) the peak of the growth rate decreases and shifts to lower wave

numbers. Then, from & ~ 4.5 toa = 2.5 the shifting to the left continues with the value of maximum
staying at about 0.25. Finally, the peak starts to grow with moving towards higher wave numbers.
Correspondingly, the range of unstable wave numbers first shortens, then widens.

The observed phenomena can be interpreted as follows. When the radius ratio is high, the volume
of the outer jet is much bigger, and its inertia dominates over the surface tension forces on both interfaces,
which leads to high growth rates and wide range of unstable wave numbers. The decrease of its radius to
a =4..2.5 results in less volume and higher lateral curvatures, so that the surface tension on both
interfaces starts to compete with inertia and decreases the growth rates and the wave number ranges. In
contrast, when the growth rates start to grow at @ < 2.5, the inertia of the inner jet starts to be the
prevailing factor. After that, the thinner the layer of the outer liquid becomes, the less resistance it poses for
the inner jet to grow. Accordingly, the range of unstable frequencies also expands. Comparing Figure 2 to
Figure 10 of [5], we can conclude that the growth rates behave in the same way, have similar peak values,
but the range of unstable wave numbers on their figure does not change.
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Figure 3 Effect of radius ratio on stability variation withd =1,5 =2
(Compare to Figure 10 of [S])

In order to evaluate the case when the density ratio is varied, we compare the results on Figure 4
of this study to those on Figures 3 a, b, ¢ of [15]. These figures show the distribution of the maximum

growth rates for three different density ratios d =0.5,1.0,2.0 respectively, where the surface tension

ratio 1s fixed and the radius ratio changes, or vice versa. Sanz and Meseguer [15] use the same length and
time scales, so the comparison can be made without converting the growth rates and wave numbers.
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However, their ratio parameters are inverses of S, d, & . Hence, we can choose one

point(O' =if). 7, K= 0.7) on all of their three plots, equal to (S =14, = 1.4) in our system, and

compare the maximum growth rates and wave numbers at this point to those calculated in this study (Table
1). This table shows good agreement between the maximum growth rates and growing discrepancy between
the most unstable wave numbers for increasing density ratios.

Table 1. Stability comparison of Fig.4 with Figs.3a,b,c of [15]at s =1.4,x =1.4
Fig4 Figs.3a,b,c of [15]
y max a)max y max a)“mx
d=0.5 1.23 0.39 1.25 0.40
d=1 125 0.55 1.20 0.55
d=2 1.27 0.76 1.17 0.75

Figure 4 shows increasing growth rates, as the density of the outer liquid increases when the inner
liquid density is fixed, while the most unstable wave numbers move slightly to the left. In reality, the jet
should be more stable, if the outer liquid becomes denser and heavier, since the flow disturbances have to

move more mass. However, in this study, the time scale itself depends on the density ratio, and the relation
_y

JSdpal)’?

between the dimensional and nondimensional growth rates can be rewritten as @ = @ (—pl-z— s
g,

3

dpa,

1
2
grows faster than @ . Thus, to examine the expected behavior, we can
ag

where the factor [
2

k N
choose, for example, p, = 1000423 ,0,=0.074—, and a, = 0.005m and plot the dimensional
m m

growth rates and wave numbers (index dim)for the same S, @, d (Figure 5). On both figures (4 and 5) we

can see that the range of unstable wave numbers almost does not change, which follows because there are
no changes in radii or surface tensions leading to the damping of high frequencies.
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Figure 6 Maximum growth rates at varying surface tension and radius ratios fora =1..10.
(Compare to Figure 3a of [15])

Analogous to Figure 3a of [15], we may plot a conclusive chart (Figure 6) containing the graphs of
the maximum growth rates at different surface tension ratios given by o = % = % , while each of
2

them is calculated for the given range of radius ratios. After comparing these figures, we can see that the
curves on Figure 6 with & = 0.7 and o = 0.3 have minima, while their curves with same & values do
not. Their o = 0.3 curve lies lower and intersects the left axis at about 0.95. Next, their curves with

o =0.05and o = 0.01 start with lower values on the left axis and terminate on the curve ABC
indicating the region where no solution exists. On contrary, these last curves on our plot do continue until
intersection with the right axis.

Overall, the differences in results of this study when comparing to the works by Sanz and
Meseguer or Chaunan and Maldarelli can be essentially attributed to the differences in dispersion relations
and the roots that are generated from them.

Next, we consider the influence of property ratios on the drop sizes based on (2.4) and compare
the results to those on Figures 3 c, d, and e of {1]. Their nondimensional length and time scales and
property ratios of the liquids are defined in the same way as in this study.

On Figure 7, we can see that the drop radius increases slightly when the density ratio grows,
regardless of the surface tension ratio, which is due to the effects shown on Figures 2 and 4. At d =1 and

« = 2 Figure 3c of [1] gives drop sizes ranging from 1.25 to 2.0. It is not a single number but a
distribution of sizes because each wave number produces drops of certain size due to their nonlinear model.
The lines for different values of § are almost coincident on their plot. On the contrary, in this study, we
consider that drops are created only at the most unstable wave numbers. Thus, we can compare the drop
sizes at the wave numbers equal to the most unstable ones and at =1 (Table 2). While their drop sizes
are slightly smaller, there is acceptable agreement between them.
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Table 2. Comparison of drop sizes of Fig.7 at d =1 with Fig.3c of [1]

k. r, (Fig.7) r, (Fig.3c [1])
a
el ] 0.66 1.52 ~14
270 0.50 1.67
s=10.0 0.39 .52

As the surface tension ratio grows (Figure 8), we can observe a gradual increase in drop sizes at all

density ratios. Similarly, calculating the most unstable wave numbers and drop sizes ats = 2, we can

compare this figure to Figure 3d (Table 3). Again, their curves for different d values almost overlap. Table
3 shows that their drop sizes are smaller like in Table 2. This may be attributed to the fact that some of the

liquid volume is spent on forming the satellite droplets, which can not be addressed in this study.
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Figure 8 Effect of surface tension ratio on drop sizes at fixed density ratios witha = 2 .

Table 3. Comparison of drop sizes of Fig.8 at § = 2 with Fig.3d of [1]
km/ r, (Fig.8) r, (Fig.3d [1])
a

d=0.1 0.50 1.67
J=10 0.50 1.68 ~15
d=10.0 0.44 1.75 ~16

On Figure 9, we can see that for small size ratios & =1.5,2.0 the drop sizes vary appreciably,
but as the size ratio becomes high they change a little. This means that the effect of larger thickness of the
outer liquid dominates over changes in the surface tension. Accordingly, this behavior can be used in cases
when the liquids are varied, but the desired size is expected to be almost same. On the other hand, high size
ratios are not be used in printing or pharmacy, due to [2] and [9].

We can compare this figure to Figure 3e of [1] (Table 4). Table 4, in contrast, shows bigger and
smaller drop sizes in their case. In @ = 1.5 case, when the outer liquid radius is still comparable to the
radius of the inner one, the bigger drop size on their figure can be explained from the point of view that

more liquid is taken to form drop than there is in a cylindrical segment with length A In the case where

ax *
a =5, it was not clear from their Figure 3e which of the bottom curves has & = 5, and for Table 3 an

asymptotic value of one of them at k = 3.28 was taken. For this case there is an appreciable difference in
the drop sizes.
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Figure 9 Effect of surface tension ratio on drop sizes at fixed radius ratios withd = 1.

Table 4. Comparison of drop sizes of Fig.9 at § = 2 with Fig.3e of [1]
ko r, (Fig.9) r, (Fig.3e [1])

a=1.5 0.80 1.81 ~2.0

a=2.0 0.99 1.68 ~1.5

a=50 3.28 1.13 ~0.5

Overall, the comparison of the drop sizes shows an acceptable agreement with the paper by Bian
and Mashayek [1] within 15% difference. This may attributed to the fact that their model is nonlinear and
takes viscosity into account.

Conclusions

In this study an inviscid linear model has been developed to analyse the temporal instability
behavior of compound jets. The difference of this model in comparison with inviscid models of other
authors 1s in the way the governing equations are setup and solved. In contrast to other works, the
dispersion equation obtained here is a second order algebraic equation producing only two symmetric roots,
which makes it simpler to use in computations.

Based on Rayleigh’s approach to evaluate the sizes of drops formed from a single jet, this study
treats the breakup of the compound jet similar to that of a single jet. The breakup is assumed to occur at the
most unstable wave number following from the dispersion equation. Since nonlinear effects are neglected,
this study is not able to give information about the satellite drops formed.

Due to simplified form of the dispersion equation and the method of the drop size evaluation this
method provides means for quick preliminary analysis of compound jets, such as how fast will disturbances
grow at certain frequencies, or what will be the approximate size of the main drops at the most unstable
frequencies.

The stability characteristics and drops sizes have been studied under varying radius, surface
tension, and density ratios of two liquids comprising the compound jet. Overall comparison of the results of
this study with those of other authors shows acceptable agreement for this type of analysis.
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Nomenclature and subscripts

a Radius of an undisturbed liquid surface

10 Bessel function of the first kind of order zero

I, Bessel function of the first kind of order one
Ko Bessel function of the second kind of order zero
Kl Bessel function of the second kind of order one
K Axisymmetric surface curvature

k Wave number of disturbance

P Current pressure of disturbed flow

/% Initial base flow pressure before disturbance

7 Drop radius

Tl Axial and radial coordinates
Axial and radial velocity of disturbance

u.,v

A Wavelength of disturbance

0] Growth rate of disturbance

o Liquid density

o Surface tension at an interface between two fluids
¢ Velocity potential of disturbance

I
v}

Number of interface: 1-inner interface, 2-outer free surface
Fluid index: 1-inner liquid, 2-outer liquid, g-ambient gas
max Most unstable disturbance
% Nondimensional quantity
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Appendix D — Modeling Dense Sprays Produced by Pressure-Swirl
Atomizer — Parallel Processing Algorithm

1. Parallel Processing

1.1 Introduction to ScaLAPACK

Assuming the Runge-Kutta time integration scheme described in Section 2.1, the BEM calculation
requires the solution of the large-dense system of linear equations for four times at every time step.
Computational cost on solving this matrix system is fairly expensive. Current BEM codes developed within
the research group[l] have used LU decomposition and SOR(Successive Over Relaxation) to solve the
large-dense matrix system. Although SOR has been a quite successive method for solving larger matrix
systems(over 1000 nodes), it has not been fast enough to get the grid convergence for high Weber number
Jets. A small grid size has been required to ensure the exactitude of computation in this case, so that
computational cost of BEM based on SOR has been quite high. Therefore, it has been necessary to modify
the matrix system solver in BEM.

The fully populated square matrix gives BEM codes a unique characteristic compared to the
banded structure present in classical CFD codes. Classical CFD codes usually accomplish the acceleration
by the use of sparse matrix inversion schemes and parallelization; dividing the computational domain into
smaller matrices that are distributed to a set of CPUs. In addition, BEM atomization problems are
distinguished by computational domains that increas with time, which yields different size matrix systen at
every time step. In addition, BEM matrices for fluids problems of this nature are gencrally poorly
conditioned[1] , i.e. not diagonally dominant, thereby further complicating inversion processes. These
issues make the matrix inversion in BEM fluids codes quite challenging. To improve performance of
current codes, the ScaLAPACK utility was investigated as an aspect of the current work.
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Scalable Linear Algebra Package (ScaLAPACK) is a set of library for distributed memory
MIMD(Multiple Instruction stream, Multiple Data stream) parallel computers developed by the
ScaLAPACK project[2] . ScaLAPACK provides routines for dense and band system of linear equations,
linear least squares problems, and eigenvalue and singular value problems. One of the aims of
ScaLAPACK project, ‘portability’, is achieved well so that it can run on any distributed memory computer
using either MPI(Message Passing Interface) or PVM(Parallel Virtual Machine).

To use ScaLAPACK, it is necessary to install several codes: MP1 or PVM, BLAS(Basic Linear
Algebra  Subprograms), BLACS(Basic Linear Algebra Communication Subprograms), and
LAPACK(Linear Algebra Package). The MPI is a standardized and portable set of library for message-
passing on the parallel computers. The PVM is a set of software tools and libraries for concurrent or
parallel computation on interconnected computers of varied architecture. The BLAS is a set of subroutines
for basic linear algebra calculations. The BLACS are a message-passing library for linear algebra. Software
hierarchy of ScaLAPACK is described in Fig. 1.1.

ScaLAPACK provides driver routines, computational routines, and auxiliary routines. Driver
routines are for solving standardized mathematical problems of matrix, e.g., linear system of matrix. It can
be easily done by calling ScaLAPACK driver routines to achieve parallelization on the problem.

ScalAPACK
N &
.
PBLAS
. 2
/ Global
_____ SN A =
/
~ d AN - A Local
LAPACK BLACS
X # % J
/ }
- Tf/ il N

Meccare Paccineg Primitivec

Fig. 1.1 Software hierarchy of ScaLAPACK][2]



1.2 Specification of HPC(High-performance computing) cluster

The performance of all parallelized computational algorithms depends not only on the
organization of the algorithm but also on the specification and the parallel architecture of the computing
machine. Typically all parallelized computational algorithm contains frequent data transmission between
processors. The minimization of data transmission between processors is a way for increasing the
performance of the algorithm. Furthermore, it is another way to use powerful computing machme for
achieving significant reduction of actual code running time. All our current ScaLAPACK and BEM codes
are running on our current HPC(High-performance computing) cluster. Hardware configuration of the HPC
cluster is presented in Table. 1.1. Software used for ScaLAPACK and BEM calculation is presented in
Table. 1.2.

Table 1.1 Hardware configuration of current HPC cluster used for ScaLAPACK & BEM calculation

- Total
Hardware Description Quantity
Head node 2.0 GHz AMD Opteron Quad Processor 1
CPU
Computing nodes 2.4 GHz AMD Opteron Quad Processor 56
Head node HP ProLiant DL385 1
Motherboard
Computing nodes HP ProLiant DL145 56
Head node 8 GB
Memory 284 GB
Computing nodes 13 nodes — 8GB, 43 nodes - 4 GB
Head node 1.2TB
Storage 5.7TB
Computing nodes 80 GB
HP ProCurve 5406z1 (10 GB Interconnection support) 1
Switch
HP ProCurve 5400z1 (10 GB Interconnection support) 1
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Table 1.2 Software used for ScaLAPACK & BEM calculation

Software

Description

Operating system

RedHat Linux 7.2

Fortran Compiler

PGI Compiler 7.1-2 by Potland Group Cluster Development kit

MPI MPICH2 1.0.5

BLAS Implemented in Potland Group Cluster Development kit
BLACS BLACS 1.1 patched

LAPACK Implemented in Potland Group Cluster Development kit
ScaLAPACK ScaLAPACK 1.8.0

1.3 Dense System of Linear Equations Solver: PDGESV

ScaLAPACK provides highly effective solver, which is called the subroutine PDGESV, for the
dense system of linear equations. The typical linear system solver, LU-factorization algorithm, has been
implemented in PDGESV, however, it has been modified for the parallel computing machine. The

modification can be characterized by two parts; Block LU Factorization and Parallel LU Factorization.

1.3.1 Block LU Factorization

Typical LU Factorization 1s working with each component of the matrix. Instead of each
component of the matrix, Block LU Factorization is working with the blocked submatrices from the
original matrix. Fig. 1.2 shows a decomposition of 9 x 9 matrix with 3 x 3 block matrix in order to operate
the Block LU Factorization. With more general notations, M x N global matrix and MB x NB block matrix,
the decomposition gives the following submatrices: 4;; which is MB x NB, Ay, which is MB x (N — NB), 4>
which is (M — MB) x NB, and 41, which is (M — MB) x (N — NB).

87



:"-A’S =3 —¥
T 3 @12 13314 315 A3 A7 A1g A9
=3 | 831 8y Ax3{qyy Ayg Ay Ap7 Azg Ayg All A12
} | %1 @3 333] %34 Y35 Ca5 %37 Y3m Y35
gy Ayp 43|44 Ays Ay gy Ayg Ay
4oy A5y Gggldgy A5 Agy Agy Agg Agg —
Aer Vgo Aszllen Fos Ygs Fp7 Ygs g A y:
oy 85y Aagl8ay A7 Agg Bgy Bgg g 2 -
dgy dgy dg3|dgy Ags dge dgy dgg dgy
dgy dgy Ag3ldgy dgs Agg Agy dgg dgg

Fig. 1.2 9 x 9 matrix decomposition with 3 x 3 block matrix for Block LU Factorization

The M x N global matrix can be thought as it decomposed into a lower triangular matrix L and an
upper triangular matrix U as illustrated in Fig. 1.3. The matrices L and U are decomposed into submatrices
with the same MB x NB block structure containing sub-matrices L;; on the lower matrix and Uj; on the upper
matrix. Here, L), is MB x NB, L, is (M — MB) x NB, Ly is (M — MB) x (N — NB), Uy, is MB x NB, U, 1s
MB x (N —NB), and Us, is (N — MB) x (N - NB). It is possible to write equations between these submatrices
in the global matrix matrix via standard linear algebra:

A11=L||Un (1.1
A =L U

2 "non (12)
A2|=L2|Un 13)
Azz . L21U|2 L22U22 (1.4)




o

Fig. 1.3 Illustration of LU decomposition of global matrix with block matrix

Using this methodology, the matrix inversion process can capitalize on LU factorization schemes.
For the Block LU Factorization process, an LU decomposition based on Gaussian elimination including
scaling and pivoting is performed on the first column panel of the global matrix, 4,, and A4;,. Once A4, and
A, are decomposed, Ly, Uy, and Ly, are known. Then U, is computed using the equation (1.2) because
Ay, and L, are known:

_ 1
UIZ (Ln) AlZ (1.5)

At this time, last work to find the whole of L and U matrix of the global matrix is to find matrices L, and

U,y Since A»; 1s not equal to L, Us,, updating of the trailing matrix is required. Updated trailing submatrix
A»> is computed:

22) 22 21 12 (1.6)

LU decomposition is applied again on the front column panel of 45, and the equation (1.5) is used again
to update the front row panel of A5, . Using the equation (1.6), the trailing submatrix A3 is updated. This
step is depicted in Fig. 1.4. The decomposition of the primary global matrix is completed by repeating this
step on the matrix followed by the completion of the step on the former matrix.
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Fig. 1.4 Application of Block LU Factorization on the trailing submatrix

1.3.2 Parallel LU Factorization

While Block LU Factorization represents the work of LU factorization on only one CPU, Parallel
LU Factorization represents the work of LU factorization with the data set distributed on a set of CPUs.
Parallel LU Factorization contains frequent communication between CPUs, so that keeping the load
balance between CPUs is a factor to affect the performance significantly. Choosing an appropriate data
distribution scheme is important to keep load balance due to denseness of the matrix to be decomposed.
The kind of data distribution scheme that will show greatest performance highly depends on the main
algorithm. In the present study, 2-D block cyclic data distribution scheme has been selected as a
distribution scheme for the parallel LU Factorization as ScaLAPACK project suggests it for the dense
matrix[2]. They says that the effectiveness of 2-D block cyclic distribution of dense matrix is justified on
the algorithm based on Gaussian elimination[2] so that we can easily see that 2-D block cyclic distribution
can be a highly effective data distribution for LU factorization because it is based on Gaussian elimination
operations.

An example of 2-D block cyclic data distribution is described in Fig. 1.5. NPCOL and NPROW
represent the number of columns and the number of rows in the process grid consecutively. 9x9 global
matrix is distributed on 2x3 processor grid with 2x2 block matrix and 5x4 maximum dimension of the
matrix owned by any processor.
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Fig. 1.5 2-D Block cyclic data distribution of 9x9 global matrix on 2x3 processor grid

The procedure to get L and U matrix from the distributed global matrix A 1s same with the
procedure outlined in section 1.3.1 for Block LU Factorization. The front column panel of the distributed
global matrix, which size is M x NB, is decomposed using Gaussian elimination to find corresponding L
and U. Using the equation (1.5) and (1.6), the front row panel and the trailing submatrix are updated. The
difference with Block LU Factorization is that Parallel LU Factorization contains the communication
between CPUs. The way to communicate and the number of communications depend on the algorithm.
Most of communications occurred between processors in Parallel LU Factorization is the broadcast of data
from a processor to other processors. Due to the characteristic of LU factorization, a current processor
which sends data to other processors does not need to wait or receive data from processors. This is the
reason that using the ScaLAPACK for the dense matrix on a set of CPUs shows better performance than
running the LAPACK or running the ScaLAPACK on one CPU even though the main algorithm, Block LU
Factorization, is applied on each case in the same way. This will be explained later.

As a whole, Parallel LU Factorization can be divided into two parts; one is the operation of
Gaussian elimination, another is updating process for the front row panel and the trailing submatrix.
Communications contained in each part are summarized in Fig. 1.6 and Fig. 1.7.
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